Normalized defining polynomial
\( x^{18} - 7 x^{17} + 18 x^{16} - 16 x^{15} - 39 x^{14} + 251 x^{13} - 698 x^{12} + 760 x^{11} + 616 x^{10} - 1445 x^{9} - 2104 x^{8} + 4601 x^{7} + 434 x^{6} - 1425 x^{5} - 804 x^{4} - 5477 x^{3} + 4840 x^{2} + 266 x - 503 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-707448263735118404989448046875=-\,5^{8}\cdot 83\cdot 139^{4}\cdot 197^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 83, 139, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} - \frac{3}{23} a^{15} - \frac{7}{23} a^{14} - \frac{5}{23} a^{13} + \frac{9}{23} a^{12} + \frac{7}{23} a^{11} - \frac{5}{23} a^{10} + \frac{5}{23} a^{9} + \frac{11}{23} a^{8} + \frac{6}{23} a^{7} + \frac{8}{23} a^{6} + \frac{1}{23} a^{5} - \frac{11}{23} a^{4} - \frac{10}{23} a^{3} - \frac{11}{23} a^{2} - \frac{9}{23} a + \frac{2}{23}$, $\frac{1}{25825735670308282984313435417153} a^{17} + \frac{402766298509543851298045260601}{25825735670308282984313435417153} a^{16} - \frac{11211975657976752119228473660891}{25825735670308282984313435417153} a^{15} + \frac{10479442340262807446505770114668}{25825735670308282984313435417153} a^{14} - \frac{8578552497317610700946440488314}{25825735670308282984313435417153} a^{13} - \frac{5383700265097466926772750410387}{25825735670308282984313435417153} a^{12} + \frac{285459235286636053137668019643}{25825735670308282984313435417153} a^{11} + \frac{8364821416976010151995318666505}{25825735670308282984313435417153} a^{10} + \frac{10697360880586585410251123288024}{25825735670308282984313435417153} a^{9} + \frac{46767323002993863372758699230}{3689390810044040426330490773879} a^{8} + \frac{2709136600787160866463764980465}{25825735670308282984313435417153} a^{7} + \frac{8134782130395215911984257126212}{25825735670308282984313435417153} a^{6} + \frac{1283570420090342853824047976074}{25825735670308282984313435417153} a^{5} - \frac{3598145889818051762282404519150}{25825735670308282984313435417153} a^{4} - \frac{3894976307704307455787169189108}{25825735670308282984313435417153} a^{3} + \frac{2323072997500243437553266410926}{25825735670308282984313435417153} a^{2} - \frac{1716097902643631744734959697097}{25825735670308282984313435417153} a + \frac{11852406335182982942899050220063}{25825735670308282984313435417153}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 154946628.028 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 168 conjugacy class representatives for t18n835 are not computed |
| Character table for t18n835 is not computed |
Intermediate fields
| 3.3.985.1, 9.9.92322657333125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $18$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 83 | Data not computed | ||||||
| 139 | Data not computed | ||||||
| $197$ | 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 197.2.1.2 | $x^{2} + 394$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.2 | $x^{2} + 394$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |