Normalized defining polynomial
\( x^{18} - 6 x^{17} + 36 x^{16} - 220 x^{15} + 960 x^{14} - 3504 x^{13} + 8755 x^{12} - 12102 x^{11} - 3681 x^{10} + 66689 x^{9} - 145626 x^{8} + 134298 x^{7} + 77273 x^{6} - 258648 x^{5} + 225774 x^{4} + 293774 x^{3} + 7236 x^{2} - 12381 x - 881 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7053072320828130442597556717031=-\,3^{24}\cdot 7^{12}\cdot 71^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{13} - \frac{2}{9} a^{11} + \frac{1}{9} a^{10} + \frac{2}{9} a^{9} + \frac{2}{9} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{2}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} - \frac{1}{9} a^{2} + \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{639} a^{16} - \frac{5}{213} a^{15} - \frac{80}{639} a^{14} - \frac{22}{213} a^{13} - \frac{92}{639} a^{12} - \frac{26}{639} a^{11} - \frac{82}{639} a^{10} - \frac{10}{639} a^{9} + \frac{31}{213} a^{8} + \frac{20}{213} a^{7} + \frac{110}{639} a^{6} + \frac{82}{213} a^{5} - \frac{263}{639} a^{4} - \frac{160}{639} a^{3} + \frac{139}{639} a^{2} + \frac{119}{639} a - \frac{37}{213}$, $\frac{1}{6082305325079479847700447419802958895710955343} a^{17} - \frac{1287768864488843943766246703965380027793343}{2027435108359826615900149139934319631903651781} a^{16} - \frac{174772824311368852981823444703204909686704897}{6082305325079479847700447419802958895710955343} a^{15} - \frac{173018006062495890391977171089264763725437520}{2027435108359826615900149139934319631903651781} a^{14} - \frac{423859810848654838573956542909724938641098319}{6082305325079479847700447419802958895710955343} a^{13} - \frac{445696993308600062271361854882778099538828627}{6082305325079479847700447419802958895710955343} a^{12} - \frac{534283839254864749509457951658596406636603113}{2027435108359826615900149139934319631903651781} a^{11} + \frac{430228224151164255175147259920852462306675826}{2027435108359826615900149139934319631903651781} a^{10} + \frac{2471794109028999649058167247403626489111817254}{6082305325079479847700447419802958895710955343} a^{9} - \frac{356726715755108223743825256759483522987054547}{6082305325079479847700447419802958895710955343} a^{8} + \frac{1851642687044049501116754333523399534567217705}{6082305325079479847700447419802958895710955343} a^{7} - \frac{8013688125197701100596806937394931719662429}{2027435108359826615900149139934319631903651781} a^{6} + \frac{288225774306377835360103704071115768324691868}{2027435108359826615900149139934319631903651781} a^{5} + \frac{187050917740312920328229916979052492135102051}{6082305325079479847700447419802958895710955343} a^{4} + \frac{2877236554921607141300375990738311962769147658}{6082305325079479847700447419802958895710955343} a^{3} + \frac{786630961999934143980434690463723338241677545}{6082305325079479847700447419802958895710955343} a^{2} + \frac{2664092374424995607457136722217235579393654587}{6082305325079479847700447419802958895710955343} a - \frac{1158752265642307710394489630148919306092059087}{6082305325079479847700447419802958895710955343}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 415677511.077 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 96 conjugacy class representatives for t18n459 are not computed |
| Character table for t18n459 is not computed |
Intermediate fields
| 3.3.3969.2, 3.3.3969.1, \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| 71 | Data not computed | ||||||