Properties

Label 18.8.56986226150...6707.3
Degree $18$
Signature $[8, 5]$
Discriminant $-\,3^{27}\cdot 73^{3}\cdot 577^{3}$
Root discriminant $30.65$
Ramified primes $3, 73, 577$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T767

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-107, 456, -294, -933, 783, 1320, -299, -1449, -1038, -506, -42, 63, 91, 57, 48, -7, -15, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 15*x^16 - 7*x^15 + 48*x^14 + 57*x^13 + 91*x^12 + 63*x^11 - 42*x^10 - 506*x^9 - 1038*x^8 - 1449*x^7 - 299*x^6 + 1320*x^5 + 783*x^4 - 933*x^3 - 294*x^2 + 456*x - 107)
 
gp: K = bnfinit(x^18 - 15*x^16 - 7*x^15 + 48*x^14 + 57*x^13 + 91*x^12 + 63*x^11 - 42*x^10 - 506*x^9 - 1038*x^8 - 1449*x^7 - 299*x^6 + 1320*x^5 + 783*x^4 - 933*x^3 - 294*x^2 + 456*x - 107, 1)
 

Normalized defining polynomial

\( x^{18} - 15 x^{16} - 7 x^{15} + 48 x^{14} + 57 x^{13} + 91 x^{12} + 63 x^{11} - 42 x^{10} - 506 x^{9} - 1038 x^{8} - 1449 x^{7} - 299 x^{6} + 1320 x^{5} + 783 x^{4} - 933 x^{3} - 294 x^{2} + 456 x - 107 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-569862261508654647313096707=-\,3^{27}\cdot 73^{3}\cdot 577^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.65$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 73, 577$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2480044852591435298679063371} a^{17} - \frac{1069171428128569018971641797}{2480044852591435298679063371} a^{16} - \frac{603275890121409947434462775}{2480044852591435298679063371} a^{15} - \frac{486715406525479802986712368}{2480044852591435298679063371} a^{14} - \frac{67179286393077392460061204}{2480044852591435298679063371} a^{13} - \frac{961848503140136994831727125}{2480044852591435298679063371} a^{12} - \frac{1156329133248248968672493841}{2480044852591435298679063371} a^{11} + \frac{7180537271458676328646545}{33973217158786784913411827} a^{10} + \frac{1232148394380190720114635298}{2480044852591435298679063371} a^{9} + \frac{783920345771675283955177583}{2480044852591435298679063371} a^{8} + \frac{442271314089020851529081028}{2480044852591435298679063371} a^{7} + \frac{456333603648018877593350032}{2480044852591435298679063371} a^{6} + \frac{587436412419726621116527289}{2480044852591435298679063371} a^{5} + \frac{1011011790281050876049001372}{2480044852591435298679063371} a^{4} + \frac{784236485131989233137728993}{2480044852591435298679063371} a^{3} + \frac{128819335589644862828155083}{2480044852591435298679063371} a^{2} + \frac{813476123371407995193845362}{2480044852591435298679063371} a + \frac{795362057953729433956486855}{2480044852591435298679063371}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2490480.76875 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T767:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 82944
The 110 conjugacy class representatives for t18n767 are not computed
Character table for t18n767 is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 9.9.22384826361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ R $18$ ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ $18$ $18$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
73Data not computed
577Data not computed