Normalized defining polynomial
\( x^{18} - 6 x^{17} + 15 x^{16} - 11 x^{15} - 12 x^{14} + 12 x^{13} + 82 x^{12} - 27 x^{11} - 396 x^{10} + 566 x^{9} + 930 x^{8} - 1380 x^{7} - 2879 x^{6} - 675 x^{5} + 3078 x^{4} + 2763 x^{3} - 72 x^{2} - 549 x - 53 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-569862261508654647313096707=-\,3^{27}\cdot 73^{3}\cdot 577^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{25172553044342629521106031233} a^{17} + \frac{9833729144194309905642730985}{25172553044342629521106031233} a^{16} - \frac{8909625711716871933426039565}{25172553044342629521106031233} a^{15} + \frac{7166290248284086182343377391}{25172553044342629521106031233} a^{14} + \frac{2212310436649697669365065467}{25172553044342629521106031233} a^{13} - \frac{4311778546487525636739500722}{25172553044342629521106031233} a^{12} + \frac{522852222314849170600138702}{25172553044342629521106031233} a^{11} + \frac{12320930528582738887484691183}{25172553044342629521106031233} a^{10} + \frac{1530187816189964858693587756}{25172553044342629521106031233} a^{9} + \frac{7199059027316326322509572339}{25172553044342629521106031233} a^{8} - \frac{5006292901020427983212658795}{25172553044342629521106031233} a^{7} + \frac{8339281218908222472967212815}{25172553044342629521106031233} a^{6} - \frac{5661719452276898955061592247}{25172553044342629521106031233} a^{5} - \frac{5258147901016957186775977483}{25172553044342629521106031233} a^{4} + \frac{12358449339654085944993067746}{25172553044342629521106031233} a^{3} - \frac{1790671103784944153012236902}{25172553044342629521106031233} a^{2} + \frac{6086792567303548595450012760}{25172553044342629521106031233} a - \frac{5753829142408117053952029496}{25172553044342629521106031233}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4057991.14929 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n765 are not computed |
| Character table for t18n765 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $18$ | $18$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 73 | Data not computed | ||||||
| 577 | Data not computed | ||||||