Normalized defining polynomial
\( x^{18} - 6 x^{17} + 3 x^{16} + 48 x^{15} - 168 x^{14} + 300 x^{13} - 138 x^{12} - 1041 x^{11} + \cdots - 107 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[8, 5]$ |
| |
| Discriminant: |
\(-569862261508654647313096707\)
\(\medspace = -\,3^{27}\cdot 73^{3}\cdot 577^{3}\)
|
| |
| Root discriminant: | \(30.65\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(3\), \(73\), \(577\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-126363}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{4}+\frac{1}{3}a$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{5}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{9}-\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{2}$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{9}-\frac{1}{9}a^{3}+\frac{1}{9}$, $\frac{1}{9}a^{13}-\frac{1}{9}a^{10}-\frac{1}{9}a^{4}+\frac{1}{9}a$, $\frac{1}{9}a^{14}-\frac{1}{9}a^{11}-\frac{1}{9}a^{5}+\frac{1}{9}a^{2}$, $\frac{1}{9}a^{15}-\frac{1}{9}a^{9}-\frac{1}{9}a^{6}+\frac{1}{9}$, $\frac{1}{9}a^{16}-\frac{1}{9}a^{10}-\frac{1}{9}a^{7}+\frac{1}{9}a$, $\frac{1}{81\cdots 63}a^{17}+\frac{33\cdots 02}{81\cdots 63}a^{16}+\frac{13\cdots 51}{27\cdots 21}a^{15}-\frac{41\cdots 43}{90\cdots 07}a^{14}-\frac{41\cdots 65}{81\cdots 63}a^{13}-\frac{19\cdots 39}{81\cdots 63}a^{12}-\frac{73\cdots 91}{81\cdots 63}a^{11}+\frac{37\cdots 75}{27\cdots 21}a^{10}-\frac{27\cdots 43}{81\cdots 63}a^{9}+\frac{62\cdots 72}{81\cdots 63}a^{8}-\frac{11\cdots 28}{81\cdots 63}a^{7}+\frac{45\cdots 27}{27\cdots 21}a^{6}+\frac{17\cdots 99}{27\cdots 21}a^{5}-\frac{25\cdots 96}{81\cdots 63}a^{4}-\frac{23\cdots 35}{81\cdots 63}a^{3}-\frac{23\cdots 42}{81\cdots 63}a^{2}-\frac{75\cdots 08}{27\cdots 21}a-\frac{25\cdots 46}{81\cdots 63}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $12$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{37\cdots 92}{81\cdots 63}a^{17}-\frac{21\cdots 68}{81\cdots 63}a^{16}+\frac{23\cdots 93}{27\cdots 21}a^{15}+\frac{54\cdots 85}{27\cdots 21}a^{14}-\frac{56\cdots 37}{81\cdots 63}a^{13}+\frac{10\cdots 05}{81\cdots 63}a^{12}-\frac{66\cdots 83}{81\cdots 63}a^{11}-\frac{10\cdots 92}{27\cdots 21}a^{10}+\frac{83\cdots 89}{81\cdots 63}a^{9}-\frac{36\cdots 05}{81\cdots 63}a^{8}-\frac{12\cdots 89}{81\cdots 63}a^{7}+\frac{58\cdots 08}{27\cdots 21}a^{6}-\frac{14\cdots 13}{90\cdots 07}a^{5}-\frac{14\cdots 97}{81\cdots 63}a^{4}+\frac{10\cdots 23}{81\cdots 63}a^{3}+\frac{29\cdots 92}{81\cdots 63}a^{2}-\frac{12\cdots 51}{27\cdots 21}a+\frac{20\cdots 36}{81\cdots 63}$, $\frac{29\cdots 80}{41\cdots 37}a^{17}-\frac{50\cdots 21}{13\cdots 79}a^{16}-\frac{47\cdots 92}{45\cdots 93}a^{15}+\frac{45\cdots 56}{13\cdots 79}a^{14}-\frac{37\cdots 49}{41\cdots 37}a^{13}+\frac{56\cdots 20}{41\cdots 37}a^{12}+\frac{30\cdots 14}{41\cdots 37}a^{11}-\frac{28\cdots 27}{41\cdots 37}a^{10}+\frac{52\cdots 20}{41\cdots 37}a^{9}+\frac{15\cdots 60}{41\cdots 37}a^{8}-\frac{13\cdots 91}{45\cdots 93}a^{7}+\frac{23\cdots 82}{13\cdots 79}a^{6}+\frac{29\cdots 89}{13\cdots 79}a^{5}-\frac{10\cdots 04}{41\cdots 37}a^{4}-\frac{21\cdots 67}{41\cdots 37}a^{3}+\frac{32\cdots 66}{41\cdots 37}a^{2}-\frac{12\cdots 98}{41\cdots 37}a-\frac{37\cdots 13}{41\cdots 37}$, $\frac{29\cdots 80}{41\cdots 37}a^{17}-\frac{50\cdots 21}{13\cdots 79}a^{16}-\frac{47\cdots 92}{45\cdots 93}a^{15}+\frac{45\cdots 56}{13\cdots 79}a^{14}-\frac{37\cdots 49}{41\cdots 37}a^{13}+\frac{56\cdots 20}{41\cdots 37}a^{12}+\frac{30\cdots 14}{41\cdots 37}a^{11}-\frac{28\cdots 27}{41\cdots 37}a^{10}+\frac{52\cdots 20}{41\cdots 37}a^{9}+\frac{15\cdots 60}{41\cdots 37}a^{8}-\frac{13\cdots 91}{45\cdots 93}a^{7}+\frac{23\cdots 82}{13\cdots 79}a^{6}+\frac{29\cdots 89}{13\cdots 79}a^{5}-\frac{10\cdots 04}{41\cdots 37}a^{4}-\frac{21\cdots 67}{41\cdots 37}a^{3}+\frac{32\cdots 66}{41\cdots 37}a^{2}-\frac{12\cdots 98}{41\cdots 37}a+\frac{37\cdots 24}{41\cdots 37}$, $\frac{29\cdots 10}{27\cdots 21}a^{17}-\frac{41\cdots 39}{81\cdots 63}a^{16}-\frac{28\cdots 61}{81\cdots 63}a^{15}+\frac{38\cdots 99}{81\cdots 63}a^{14}-\frac{31\cdots 49}{27\cdots 21}a^{13}+\frac{13\cdots 55}{81\cdots 63}a^{12}+\frac{50\cdots 25}{81\cdots 63}a^{11}-\frac{82\cdots 40}{81\cdots 63}a^{10}+\frac{41\cdots 30}{27\cdots 21}a^{9}+\frac{26\cdots 72}{27\cdots 21}a^{8}-\frac{31\cdots 25}{81\cdots 63}a^{7}+\frac{13\cdots 57}{81\cdots 63}a^{6}+\frac{24\cdots 76}{81\cdots 63}a^{5}-\frac{85\cdots 81}{27\cdots 21}a^{4}-\frac{81\cdots 97}{81\cdots 63}a^{3}+\frac{98\cdots 57}{81\cdots 63}a^{2}-\frac{49\cdots 07}{81\cdots 63}a+\frac{11\cdots 75}{90\cdots 07}$, $\frac{24\cdots 42}{27\cdots 21}a^{17}-\frac{69\cdots 09}{81\cdots 63}a^{16}+\frac{19\cdots 73}{81\cdots 63}a^{15}+\frac{17\cdots 11}{81\cdots 63}a^{14}-\frac{23\cdots 83}{81\cdots 63}a^{13}+\frac{69\cdots 42}{81\cdots 63}a^{12}-\frac{11\cdots 82}{81\cdots 63}a^{11}+\frac{92\cdots 27}{27\cdots 21}a^{10}+\frac{12\cdots 79}{27\cdots 21}a^{9}-\frac{26\cdots 97}{27\cdots 21}a^{8}+\frac{21\cdots 98}{81\cdots 63}a^{7}+\frac{12\cdots 81}{81\cdots 63}a^{6}-\frac{14\cdots 65}{81\cdots 63}a^{5}-\frac{19\cdots 00}{81\cdots 63}a^{4}+\frac{12\cdots 84}{81\cdots 63}a^{3}-\frac{50\cdots 32}{81\cdots 63}a^{2}-\frac{14\cdots 02}{90\cdots 07}a+\frac{18\cdots 51}{27\cdots 21}$, $\frac{58\cdots 64}{81\cdots 63}a^{17}-\frac{27\cdots 80}{81\cdots 63}a^{16}-\frac{16\cdots 67}{81\cdots 63}a^{15}+\frac{24\cdots 55}{81\cdots 63}a^{14}-\frac{21\cdots 31}{27\cdots 21}a^{13}+\frac{98\cdots 92}{81\cdots 63}a^{12}+\frac{15\cdots 42}{27\cdots 21}a^{11}-\frac{48\cdots 83}{81\cdots 63}a^{10}+\frac{79\cdots 38}{81\cdots 63}a^{9}+\frac{35\cdots 30}{81\cdots 63}a^{8}-\frac{17\cdots 38}{81\cdots 63}a^{7}+\frac{84\cdots 14}{81\cdots 63}a^{6}+\frac{11\cdots 28}{81\cdots 63}a^{5}-\frac{43\cdots 82}{27\cdots 21}a^{4}+\frac{70\cdots 64}{81\cdots 63}a^{3}+\frac{14\cdots 11}{27\cdots 21}a^{2}-\frac{25\cdots 72}{81\cdots 63}a-\frac{49\cdots 08}{81\cdots 63}$, $\frac{89\cdots 86}{81\cdots 63}a^{17}-\frac{14\cdots 32}{27\cdots 21}a^{16}-\frac{20\cdots 66}{81\cdots 63}a^{15}+\frac{41\cdots 76}{81\cdots 63}a^{14}-\frac{10\cdots 05}{81\cdots 63}a^{13}+\frac{14\cdots 43}{81\cdots 63}a^{12}+\frac{57\cdots 65}{90\cdots 07}a^{11}-\frac{90\cdots 30}{81\cdots 63}a^{10}+\frac{15\cdots 32}{81\cdots 63}a^{9}+\frac{72\cdots 26}{81\cdots 63}a^{8}-\frac{12\cdots 56}{27\cdots 21}a^{7}+\frac{19\cdots 97}{81\cdots 63}a^{6}+\frac{31\cdots 81}{81\cdots 63}a^{5}-\frac{33\cdots 93}{81\cdots 63}a^{4}-\frac{19\cdots 94}{81\cdots 63}a^{3}+\frac{39\cdots 86}{27\cdots 21}a^{2}-\frac{49\cdots 37}{81\cdots 63}a+\frac{14\cdots 96}{81\cdots 63}$, $\frac{16\cdots 49}{81\cdots 63}a^{17}-\frac{88\cdots 51}{90\cdots 07}a^{16}-\frac{12\cdots 44}{27\cdots 21}a^{15}+\frac{72\cdots 50}{81\cdots 63}a^{14}-\frac{19\cdots 28}{81\cdots 63}a^{13}+\frac{31\cdots 85}{90\cdots 07}a^{12}+\frac{17\cdots 71}{27\cdots 21}a^{11}-\frac{15\cdots 52}{81\cdots 63}a^{10}+\frac{89\cdots 59}{27\cdots 21}a^{9}+\frac{10\cdots 54}{81\cdots 63}a^{8}-\frac{21\cdots 97}{27\cdots 21}a^{7}+\frac{12\cdots 55}{27\cdots 21}a^{6}+\frac{44\cdots 51}{81\cdots 63}a^{5}-\frac{57\cdots 80}{81\cdots 63}a^{4}+\frac{16\cdots 69}{27\cdots 21}a^{3}+\frac{21\cdots 23}{90\cdots 07}a^{2}-\frac{12\cdots 78}{81\cdots 63}a+\frac{16\cdots 90}{27\cdots 21}$, $\frac{51\cdots 09}{27\cdots 21}a^{17}-\frac{26\cdots 92}{27\cdots 21}a^{16}-\frac{11\cdots 50}{90\cdots 07}a^{15}+\frac{65\cdots 07}{81\cdots 63}a^{14}-\frac{19\cdots 56}{81\cdots 63}a^{13}+\frac{34\cdots 14}{81\cdots 63}a^{12}-\frac{11\cdots 54}{81\cdots 63}a^{11}-\frac{12\cdots 65}{81\cdots 63}a^{10}+\frac{27\cdots 61}{81\cdots 63}a^{9}-\frac{23\cdots 10}{90\cdots 07}a^{8}-\frac{15\cdots 25}{27\cdots 21}a^{7}+\frac{14\cdots 14}{27\cdots 21}a^{6}+\frac{12\cdots 12}{81\cdots 63}a^{5}-\frac{37\cdots 37}{81\cdots 63}a^{4}+\frac{16\cdots 54}{81\cdots 63}a^{3}+\frac{11\cdots 18}{81\cdots 63}a^{2}-\frac{35\cdots 45}{81\cdots 63}a-\frac{64\cdots 27}{81\cdots 63}$, $\frac{87\cdots 89}{27\cdots 21}a^{17}-\frac{68\cdots 02}{27\cdots 21}a^{16}+\frac{11\cdots 58}{27\cdots 21}a^{15}+\frac{11\cdots 82}{81\cdots 63}a^{14}-\frac{64\cdots 04}{81\cdots 63}a^{13}+\frac{14\cdots 83}{81\cdots 63}a^{12}-\frac{17\cdots 94}{81\cdots 63}a^{11}-\frac{16\cdots 51}{81\cdots 63}a^{10}+\frac{10\cdots 47}{81\cdots 63}a^{9}-\frac{41\cdots 40}{27\cdots 21}a^{8}-\frac{90\cdots 52}{90\cdots 07}a^{7}+\frac{95\cdots 73}{27\cdots 21}a^{6}-\frac{13\cdots 01}{81\cdots 63}a^{5}-\frac{14\cdots 06}{81\cdots 63}a^{4}+\frac{15\cdots 32}{81\cdots 63}a^{3}-\frac{29\cdots 94}{81\cdots 63}a^{2}-\frac{27\cdots 23}{81\cdots 63}a+\frac{33\cdots 96}{81\cdots 63}$, $\frac{19\cdots 94}{81\cdots 63}a^{17}-\frac{13\cdots 82}{81\cdots 63}a^{16}+\frac{22\cdots 04}{81\cdots 63}a^{15}+\frac{67\cdots 66}{81\cdots 63}a^{14}-\frac{14\cdots 73}{27\cdots 21}a^{13}+\frac{36\cdots 43}{27\cdots 21}a^{12}-\frac{46\cdots 58}{27\cdots 21}a^{11}-\frac{74\cdots 02}{81\cdots 63}a^{10}+\frac{68\cdots 11}{81\cdots 63}a^{9}-\frac{10\cdots 04}{81\cdots 63}a^{8}-\frac{79\cdots 23}{81\cdots 63}a^{7}+\frac{20\cdots 53}{81\cdots 63}a^{6}-\frac{19\cdots 00}{81\cdots 63}a^{5}-\frac{15\cdots 45}{27\cdots 21}a^{4}+\frac{19\cdots 22}{90\cdots 07}a^{3}-\frac{90\cdots 61}{90\cdots 07}a^{2}-\frac{92\cdots 97}{81\cdots 63}a-\frac{11\cdots 83}{81\cdots 63}$, $\frac{34\cdots 24}{81\cdots 63}a^{17}-\frac{15\cdots 69}{81\cdots 63}a^{16}-\frac{16\cdots 83}{81\cdots 63}a^{15}+\frac{18\cdots 15}{90\cdots 07}a^{14}-\frac{35\cdots 83}{81\cdots 63}a^{13}+\frac{38\cdots 17}{81\cdots 63}a^{12}+\frac{60\cdots 59}{81\cdots 63}a^{11}-\frac{42\cdots 13}{90\cdots 07}a^{10}+\frac{54\cdots 86}{90\cdots 07}a^{9}+\frac{55\cdots 88}{81\cdots 63}a^{8}-\frac{16\cdots 91}{81\cdots 63}a^{7}+\frac{50\cdots 94}{81\cdots 63}a^{6}+\frac{18\cdots 25}{90\cdots 07}a^{5}-\frac{15\cdots 22}{81\cdots 63}a^{4}-\frac{11\cdots 39}{81\cdots 63}a^{3}+\frac{77\cdots 89}{81\cdots 63}a^{2}-\frac{14\cdots 44}{27\cdots 21}a+\frac{69\cdots 49}{27\cdots 21}$
|
| |
| Regulator: | \( 3198073.57437 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{5}\cdot 3198073.57437 \cdot 1}{2\cdot\sqrt{569862261508654647313096707}}\cr\approx \mathstrut & 0.167924016596 \end{aligned}\] (assuming GRH)
Galois group
$S_4^3.C_6$ (as 18T765):
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for $S_4^3.C_6$ |
| Character table for $S_4^3.C_6$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/padicField/7.9.0.1}{9} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.9.0.1}{9} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/padicField/53.4.0.1}{4} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.3.6.27a1.43 | $x^{18} + 12 x^{16} + 6 x^{15} + 60 x^{14} + 60 x^{13} + 181 x^{12} + 240 x^{11} + 408 x^{10} + 524 x^{9} + 696 x^{8} + 744 x^{7} + 787 x^{6} + 720 x^{5} + 540 x^{4} + 382 x^{3} + 204 x^{2} + 60 x + 10$ | $6$ | $3$ | $27$ | not computed | not computed |
|
\(73\)
| $\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 73.2.1.0a1.1 | $x^{2} + 70 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 73.2.1.0a1.1 | $x^{2} + 70 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 73.2.1.0a1.1 | $x^{2} + 70 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 73.3.1.0a1.1 | $x^{3} + 2 x + 68$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 73.3.1.0a1.1 | $x^{3} + 2 x + 68$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 73.1.4.3a1.3 | $x^{4} + 1825$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
|
\(577\)
| $\Q_{577}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{577}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{577}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{577}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |