Normalized defining polynomial
\( x^{18} + 2 x^{16} - 129 x^{14} - 554 x^{12} + 2083 x^{10} + 13606 x^{8} - 2176 x^{6} - 81732 x^{4} + 40631 x^{2} + 52879 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-536495523810946581168977084416=-\,2^{18}\cdot 7^{12}\cdot 52879^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 52879$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{3}{7} a^{10} - \frac{1}{7} a^{8} - \frac{1}{7} a^{4} - \frac{3}{7} a^{2} + \frac{1}{7}$, $\frac{1}{7} a^{13} - \frac{3}{7} a^{11} - \frac{1}{7} a^{9} - \frac{1}{7} a^{5} - \frac{3}{7} a^{3} + \frac{1}{7} a$, $\frac{1}{7} a^{14} - \frac{3}{7} a^{10} - \frac{3}{7} a^{8} - \frac{1}{7} a^{6} + \frac{1}{7} a^{4} - \frac{1}{7} a^{2} + \frac{3}{7}$, $\frac{1}{7} a^{15} - \frac{3}{7} a^{11} - \frac{3}{7} a^{9} - \frac{1}{7} a^{7} + \frac{1}{7} a^{5} - \frac{1}{7} a^{3} + \frac{3}{7} a$, $\frac{1}{370515703629615229931} a^{16} + \frac{20441932479689837373}{370515703629615229931} a^{14} - \frac{3750005938555205810}{52930814804230747133} a^{12} - \frac{92904294410712695686}{370515703629615229931} a^{10} + \frac{175833012697128356033}{370515703629615229931} a^{8} + \frac{119467133269501835338}{370515703629615229931} a^{6} + \frac{109113912213779447213}{370515703629615229931} a^{4} + \frac{19674857763283535354}{370515703629615229931} a^{2} - \frac{74702246328811781249}{370515703629615229931}$, $\frac{1}{370515703629615229931} a^{17} + \frac{20441932479689837373}{370515703629615229931} a^{15} - \frac{3750005938555205810}{52930814804230747133} a^{13} - \frac{92904294410712695686}{370515703629615229931} a^{11} + \frac{175833012697128356033}{370515703629615229931} a^{9} + \frac{119467133269501835338}{370515703629615229931} a^{7} + \frac{109113912213779447213}{370515703629615229931} a^{5} + \frac{19674857763283535354}{370515703629615229931} a^{3} - \frac{74702246328811781249}{370515703629615229931} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 124435811.904 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n401 |
| Character table for t18n401 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.4.8125598656.2, 9.7.6221161471.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 52879 | Data not computed | ||||||