Normalized defining polynomial
\( x^{18} - 3 x^{17} - 5 x^{16} - 8 x^{15} + 126 x^{14} - 81 x^{13} - 785 x^{12} - 788 x^{11} + 3973 x^{10} + 11056 x^{9} + 7631 x^{8} - 6060 x^{7} - 36066 x^{6} - 44228 x^{5} - 1187 x^{4} + 31520 x^{3} + 23238 x^{2} + 6804 x + 729 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-533455882231418745551761028651=-\,179\cdot 1129^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $179, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{9} a^{16} - \frac{1}{3} a^{15} + \frac{4}{9} a^{14} + \frac{1}{9} a^{13} - \frac{2}{9} a^{10} + \frac{4}{9} a^{9} + \frac{4}{9} a^{8} + \frac{4}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2} + \frac{2}{9} a$, $\frac{1}{21986041550275311773546706927864194691} a^{17} + \frac{40080713750968235935696750698237803}{7328680516758437257848902309288064897} a^{16} + \frac{8821137368568549711905024748289809889}{21986041550275311773546706927864194691} a^{15} + \frac{6455232913496983077155597701731316657}{21986041550275311773546706927864194691} a^{14} + \frac{892164568890552892968404514306646}{62638295015029378272212840250325341} a^{13} - \frac{7598709539540869840880271805158608}{24675691975617633864811118886491801} a^{12} - \frac{5901355762452859501050775229339712947}{21986041550275311773546706927864194691} a^{11} - \frac{10218595995934342970732330772702746210}{21986041550275311773546706927864194691} a^{10} + \frac{9281214473375361014415297972819074461}{21986041550275311773546706927864194691} a^{9} + \frac{3519404472821086928183398219043193289}{21986041550275311773546706927864194691} a^{8} - \frac{5124372689722933779010032134518086646}{21986041550275311773546706927864194691} a^{7} - \frac{211023660913709915282053651276197721}{563744655135264404449915562252928069} a^{6} - \frac{2570635363968037566230713689085111393}{7328680516758437257848902309288064897} a^{5} - \frac{5540855796514018557203867863626626849}{21986041550275311773546706927864194691} a^{4} - \frac{8535525979230379244694769325636775506}{21986041550275311773546706927864194691} a^{3} + \frac{5909291634462384338046893053007384690}{21986041550275311773546706927864194691} a^{2} + \frac{567100370058861979115578227085686823}{2442893505586145752616300769762688299} a + \frac{127053447393358175658383117399843537}{271432611731793972512922307751409811}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 61959052.9667 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 9216 |
| The 88 conjugacy class representatives for t18n548 are not computed |
| Character table for t18n548 is not computed |
Intermediate fields
| 3.3.1129.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $179$ | 179.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 179.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 179.4.0.1 | $x^{4} - x + 7$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 179.4.0.1 | $x^{4} - x + 7$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 179.4.0.1 | $x^{4} - x + 7$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1129 | Data not computed | ||||||