Normalized defining polynomial
\( x^{18} + 9x^{16} - 8x^{14} - 191x^{12} - 107x^{10} + 893x^{8} + 181x^{6} - 780x^{4} + 104x^{2} + 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[8, 5]$ |
| |
| Discriminant: |
\(-4405473434934059943108359950336\)
\(\medspace = -\,2^{12}\cdot 32009^{6}\)
|
| |
| Root discriminant: | \(50.40\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(32009\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{14}-\frac{1}{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a$, $\frac{1}{6886857178}a^{16}-\frac{334471770}{3443428589}a^{14}-\frac{281050833}{3443428589}a^{12}+\frac{1038665305}{6886857178}a^{10}-\frac{1279766775}{6886857178}a^{8}-\frac{1}{2}a^{7}-\frac{1485020054}{3443428589}a^{6}+\frac{746893824}{3443428589}a^{4}-\frac{1}{2}a^{3}+\frac{2159340103}{6886857178}a^{2}-\frac{1}{2}a+\frac{2487584835}{6886857178}$, $\frac{1}{6886857178}a^{17}-\frac{334471770}{3443428589}a^{15}-\frac{281050833}{3443428589}a^{13}+\frac{1038665305}{6886857178}a^{11}-\frac{1279766775}{6886857178}a^{9}-\frac{1}{2}a^{8}-\frac{1485020054}{3443428589}a^{7}+\frac{746893824}{3443428589}a^{5}-\frac{1}{2}a^{4}+\frac{2159340103}{6886857178}a^{3}-\frac{1}{2}a^{2}+\frac{2487584835}{6886857178}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $12$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $\frac{523679109}{3443428589}a^{17}+\frac{9442191273}{6886857178}a^{15}-\frac{8244981571}{6886857178}a^{13}-\frac{200307402921}{6886857178}a^{11}-\frac{115420400019}{6886857178}a^{9}+\frac{935878699841}{6886857178}a^{7}+\frac{212368067903}{6886857178}a^{5}-\frac{817418119851}{6886857178}a^{3}+\frac{34198628605}{3443428589}a$, $\frac{3843657}{112899298}a^{16}+\frac{35345999}{112899298}a^{14}-\frac{11766584}{56449649}a^{12}-\frac{367773762}{56449649}a^{10}-\frac{275723572}{56449649}a^{8}+\frac{1637668217}{56449649}a^{6}+\frac{607578613}{56449649}a^{4}-\frac{2658858299}{112899298}a^{2}+\frac{170704361}{112899298}$, $\frac{673240381}{6886857178}a^{17}+\frac{6029618115}{6886857178}a^{15}-\frac{5661205707}{6886857178}a^{13}-\frac{128506622841}{6886857178}a^{11}-\frac{66765827097}{6886857178}a^{9}+\frac{607621428199}{6886857178}a^{7}+\frac{104820751923}{6886857178}a^{5}-\frac{273336168593}{3443428589}a^{3}+\frac{36762171273}{3443428589}a$, $\frac{374117837}{6886857178}a^{16}+\frac{1706286579}{3443428589}a^{14}-\frac{1291887932}{3443428589}a^{12}-\frac{35900390040}{3443428589}a^{10}-\frac{24327286461}{3443428589}a^{8}+\frac{164128635821}{3443428589}a^{6}+\frac{53773657990}{3443428589}a^{4}-\frac{270745782665}{6886857178}a^{2}+\frac{879885921}{3443428589}$, $\frac{123639587}{6886857178}a^{16}+\frac{549637002}{3443428589}a^{14}-\frac{541948549}{3443428589}a^{12}-\frac{11699799470}{3443428589}a^{10}-\frac{5835517899}{3443428589}a^{8}+\frac{54774792655}{3443428589}a^{6}+\frac{10185552740}{3443428589}a^{4}-\frac{91401768627}{6886857178}a^{2}+\frac{7849842328}{3443428589}$, $\frac{69803449}{3443428589}a^{16}+\frac{1233158177}{6886857178}a^{14}-\frac{1345880381}{6886857178}a^{12}-\frac{26752669633}{6886857178}a^{10}-\frac{11083224631}{6886857178}a^{8}+\frac{132345815755}{6886857178}a^{6}+\frac{19892395669}{6886857178}a^{4}-\frac{131929766089}{6886857178}a^{2}+\frac{439306041}{3443428589}$, $\frac{1012539633}{6886857178}a^{17}+\frac{9178455985}{6886857178}a^{15}-\frac{3704009561}{3443428589}a^{13}-\frac{96473204130}{3443428589}a^{11}-\frac{60533563394}{3443428589}a^{9}+\frac{439220973378}{3443428589}a^{7}+\frac{110324390961}{3443428589}a^{5}-\frac{714842672137}{6886857178}a^{3}+\frac{89633081277}{6886857178}a$, $\frac{4566957}{13718839}a^{17}-\frac{333235869}{3443428589}a^{16}+\frac{83607165}{27437678}a^{15}-\frac{6031929277}{6886857178}a^{14}-\frac{30002221}{13718839}a^{13}+\frac{5062904103}{6886857178}a^{12}-\frac{1751460641}{27437678}a^{11}+\frac{127975064559}{6886857178}a^{10}-\frac{1245944675}{27437678}a^{9}+\frac{39093968175}{3443428589}a^{8}+\frac{3960364678}{13718839}a^{7}-\frac{599494148963}{6886857178}a^{6}+\frac{1402897696}{13718839}a^{5}-\frac{83378612719}{3443428589}a^{4}-\frac{3271703235}{13718839}a^{3}+\frac{270342129438}{3443428589}a^{2}+\frac{54790893}{13718839}a-\frac{671823901}{3443428589}$, $\frac{1219788691}{6886857178}a^{17}+\frac{116416108}{3443428589}a^{16}+\frac{5516576471}{3443428589}a^{15}+\frac{2154269721}{6886857178}a^{14}-\frac{4633858624}{3443428589}a^{13}-\frac{654686201}{3443428589}a^{12}-\frac{116756310662}{3443428589}a^{11}-\frac{44667446977}{6886857178}a^{10}-\frac{70674066830}{3443428589}a^{9}-\frac{35965340011}{6886857178}a^{8}+\frac{1084972036477}{6886857178}a^{7}+\frac{98001974950}{3443428589}a^{6}+\frac{138247374568}{3443428589}a^{5}+\frac{42369522967}{3443428589}a^{4}-\frac{472748118193}{3443428589}a^{3}-\frac{75666052311}{3443428589}a^{2}+\frac{64003696345}{6886857178}a+\frac{687037485}{3443428589}$, $\frac{399620706}{3443428589}a^{17}+\frac{3694946}{3443428589}a^{16}+\frac{7285224109}{6886857178}a^{15}+\frac{978305}{3443428589}a^{14}-\frac{5499180789}{6886857178}a^{13}-\frac{358067385}{3443428589}a^{12}-\frac{76347118736}{3443428589}a^{11}-\frac{1719642225}{6886857178}a^{10}-\frac{51279689490}{3443428589}a^{9}+\frac{5409910744}{3443428589}a^{8}+\frac{345955574906}{3443428589}a^{7}+\frac{14001391408}{3443428589}a^{6}+\frac{200371358227}{6886857178}a^{5}-\frac{24311247951}{6886857178}a^{4}-\frac{292798682914}{3443428589}a^{3}-\frac{43452418173}{6886857178}a^{2}+\frac{28809433607}{3443428589}a+\frac{9039395857}{6886857178}$, $\frac{3495567845}{6886857178}a^{17}+\frac{10824285}{56449649}a^{16}+\frac{32099802119}{6886857178}a^{15}+\frac{198385363}{112899298}a^{14}-\frac{21982904557}{6886857178}a^{13}-\frac{140981847}{112899298}a^{12}-\frac{670524066989}{6886857178}a^{11}-\frac{4163444497}{112899298}a^{10}-\frac{495626669071}{6886857178}a^{9}-\frac{3023410243}{112899298}a^{8}+\frac{3011962661123}{6886857178}a^{7}+\frac{18874749655}{112899298}a^{6}+\frac{1140315848865}{6886857178}a^{5}+\frac{7437085571}{112899298}a^{4}-\frac{1244544001068}{3443428589}a^{3}-\frac{15108780885}{112899298}a^{2}-\frac{9918890164}{3443428589}a-\frac{120747275}{56449649}$
|
| |
| Regulator: | \( 359830335.235 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{5}\cdot 359830335.235 \cdot 1}{2\cdot\sqrt{4405473434934059943108359950336}}\cr\approx \mathstrut & 0.214887320959 \end{aligned}\] (assuming GRH)
Galois group
$C_2^3:A_4^2.S_4$ (as 18T662):
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for $C_2^3:A_4^2.S_4$ |
| Character table for $C_2^3:A_4^2.S_4$ |
Intermediate fields
| 3.3.32009.2, 9.9.32795655776729.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{3}$ | ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{3}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{6}$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{4}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.2.6a2.1 | $x^{6} + 4 x^{4} + 2 x^{3} + 3 x^{2} + 4 x + 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $$[2, 2, 2]^{3}$$ |
| 2.3.2.6a3.1 | $x^{6} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 6 x + 5$ | $2$ | $3$ | $6$ | $A_4$ | $$[2, 2]^{3}$$ | |
| 2.6.1.0a1.1 | $x^{6} + x^{4} + x^{3} + x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(32009\)
| $\Q_{32009}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{32009}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{32009}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{32009}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{32009}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{32009}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ |