Normalized defining polynomial
\( x^{18} - 18 x^{16} - 12 x^{15} + 135 x^{14} + 180 x^{13} - 485 x^{12} - 1080 x^{11} + 555 x^{10} + 3120 x^{9} + 1512 x^{8} - 3780 x^{7} - 5155 x^{6} - 324 x^{5} + 4119 x^{4} + 3464 x^{3} + 504 x^{2} - 672 x - 16 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-39997499095444517159888896524288=-\,2^{17}\cdot 3^{18}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{12} - \frac{1}{8} a^{10} - \frac{1}{16} a^{8} - \frac{1}{32} a^{6} + \frac{15}{32} a^{4} + \frac{3}{8} a^{3} - \frac{13}{32} a^{2} - \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{32} a^{13} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{5}{32} a^{7} + \frac{1}{8} a^{6} + \frac{7}{32} a^{5} + \frac{1}{8} a^{4} + \frac{7}{32} a^{3} - \frac{1}{4} a^{2} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{16} a^{11} + \frac{3}{32} a^{10} - \frac{3}{32} a^{9} + \frac{15}{64} a^{8} + \frac{9}{64} a^{7} - \frac{13}{64} a^{6} + \frac{13}{64} a^{5} - \frac{13}{64} a^{4} - \frac{15}{64} a^{3} + \frac{1}{16} a^{2} - \frac{3}{16} a + \frac{1}{4}$, $\frac{1}{256} a^{15} + \frac{1}{256} a^{13} + \frac{1}{128} a^{12} - \frac{3}{128} a^{11} + \frac{1}{32} a^{10} + \frac{5}{256} a^{9} + \frac{3}{64} a^{8} + \frac{29}{128} a^{7} + \frac{13}{128} a^{6} - \frac{1}{128} a^{5} - \frac{37}{128} a^{4} - \frac{125}{256} a^{3} + \frac{1}{128} a^{2} + \frac{9}{64} a + \frac{7}{32}$, $\frac{1}{256} a^{16} + \frac{1}{256} a^{14} + \frac{1}{128} a^{13} + \frac{1}{128} a^{12} + \frac{1}{32} a^{11} - \frac{27}{256} a^{10} + \frac{3}{64} a^{9} + \frac{21}{128} a^{8} + \frac{13}{128} a^{7} - \frac{5}{128} a^{6} + \frac{27}{128} a^{5} + \frac{123}{256} a^{4} - \frac{15}{128} a^{3} - \frac{17}{64} a^{2} - \frac{13}{32} a - \frac{1}{8}$, $\frac{1}{512} a^{17} - \frac{1}{512} a^{16} - \frac{1}{512} a^{15} + \frac{1}{512} a^{14} + \frac{3}{256} a^{13} - \frac{3}{256} a^{12} + \frac{9}{512} a^{11} - \frac{9}{512} a^{10} - \frac{15}{128} a^{9} - \frac{11}{64} a^{8} - \frac{3}{16} a^{7} + \frac{21}{128} a^{6} - \frac{63}{512} a^{5} + \frac{99}{512} a^{4} + \frac{19}{128} a^{3} + \frac{7}{16} a^{2} + \frac{1}{4} a + \frac{13}{32}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6936209840.21 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 267 conjugacy class representatives for t18n926 are not computed |
| Character table for t18n926 is not computed |
Intermediate fields
| 3.3.961.1, 6.4.3694084.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.9.3 | $x^{4} + 6 x^{2} + 10$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3 | Data not computed | ||||||
| $31$ | 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |