Properties

Label 18.8.38268596395...2896.2
Degree $18$
Signature $[8, 5]$
Discriminant $-\,2^{6}\cdot 3^{32}\cdot 19^{9}$
Root discriminant $38.72$
Ramified primes $2, 3, 19$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T585

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-9, 108, -270, -162, 1404, -972, -3105, 594, 3897, 1362, -423, 36, -243, -18, -36, 12, 9, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 9*x^16 + 12*x^15 - 36*x^14 - 18*x^13 - 243*x^12 + 36*x^11 - 423*x^10 + 1362*x^9 + 3897*x^8 + 594*x^7 - 3105*x^6 - 972*x^5 + 1404*x^4 - 162*x^3 - 270*x^2 + 108*x - 9)
 
gp: K = bnfinit(x^18 - 6*x^17 + 9*x^16 + 12*x^15 - 36*x^14 - 18*x^13 - 243*x^12 + 36*x^11 - 423*x^10 + 1362*x^9 + 3897*x^8 + 594*x^7 - 3105*x^6 - 972*x^5 + 1404*x^4 - 162*x^3 - 270*x^2 + 108*x - 9, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{17} + 9 x^{16} + 12 x^{15} - 36 x^{14} - 18 x^{13} - 243 x^{12} + 36 x^{11} - 423 x^{10} + 1362 x^{9} + 3897 x^{8} + 594 x^{7} - 3105 x^{6} - 972 x^{5} + 1404 x^{4} - 162 x^{3} - 270 x^{2} + 108 x - 9 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-38268596395430935911408712896=-\,2^{6}\cdot 3^{32}\cdot 19^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.72$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{14} - \frac{1}{2}$, $\frac{1}{156} a^{15} + \frac{1}{78} a^{14} + \frac{2}{39} a^{13} + \frac{11}{156} a^{12} + \frac{5}{78} a^{11} - \frac{3}{52} a^{10} + \frac{1}{26} a^{9} - \frac{7}{52} a^{8} + \frac{9}{26} a^{7} - \frac{21}{52} a^{6} + \frac{1}{26} a^{5} + \frac{1}{4} a^{4} - \frac{1}{26} a^{3} + \frac{1}{52} a^{2} + \frac{3}{52} a + \frac{15}{52}$, $\frac{1}{2652} a^{16} - \frac{5}{2652} a^{15} - \frac{27}{442} a^{14} + \frac{5}{156} a^{13} + \frac{115}{2652} a^{12} - \frac{209}{2652} a^{11} - \frac{3}{884} a^{10} + \frac{41}{2652} a^{9} - \frac{349}{884} a^{8} + \frac{35}{884} a^{7} - \frac{215}{884} a^{6} + \frac{259}{884} a^{5} + \frac{115}{884} a^{4} - \frac{193}{884} a^{3} - \frac{15}{442} a^{2} + \frac{109}{221} a + \frac{311}{884}$, $\frac{1}{10018352929881254780172} a^{17} - \frac{620215909458195755}{10018352929881254780172} a^{16} - \frac{11146039043537772877}{5009176464940627390086} a^{15} + \frac{265762781634725313663}{3339450976627084926724} a^{14} + \frac{132509297125655369741}{3339450976627084926724} a^{13} - \frac{523239252707399781931}{10018352929881254780172} a^{12} - \frac{499509319227453491845}{10018352929881254780172} a^{11} + \frac{242724527161294601165}{10018352929881254780172} a^{10} + \frac{291007471010038891405}{10018352929881254780172} a^{9} - \frac{418730172836635948313}{3339450976627084926724} a^{8} + \frac{305104184843141171255}{3339450976627084926724} a^{7} + \frac{634861851166160290973}{3339450976627084926724} a^{6} - \frac{138577423266618730441}{3339450976627084926724} a^{5} - \frac{53825511819195601747}{3339450976627084926724} a^{4} + \frac{408526668911265969065}{834862744156771231681} a^{3} - \frac{365715512151526220935}{834862744156771231681} a^{2} + \frac{1357375876552455436073}{3339450976627084926724} a - \frac{235987747760357937859}{834862744156771231681}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 54982279.0139 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T585:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 13824
The 96 conjugacy class representatives for t18n585 are not computed
Character table for t18n585 is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 9.9.5609891727441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.2$x^{6} - x^{4} - 5$$2$$3$$6$$A_4\times C_2$$[2, 2]^{6}$
3Data not computed
$19$19.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
19.3.2.3$x^{3} - 304$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.2.3$x^{3} - 304$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
19.6.5.4$x^{6} + 76$$6$$1$$5$$C_6$$[\ ]_{6}$