Normalized defining polynomial
\( x^{18} - 9 x^{17} + 21 x^{16} + 35 x^{15} - 168 x^{14} - 117 x^{13} + 1331 x^{12} - 2265 x^{11} - 735 x^{10} + 7830 x^{9} - 8949 x^{8} + 459 x^{7} + 8037 x^{6} - 6273 x^{5} - 612 x^{4} + 1515 x^{3} - 315 x^{2} + 81 x - 3 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-330547723709515877115643871232=-\,2^{14}\cdot 3^{25}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{68} a^{16} + \frac{15}{68} a^{15} - \frac{7}{34} a^{14} + \frac{15}{34} a^{13} + \frac{15}{34} a^{12} - \frac{27}{68} a^{11} - \frac{15}{68} a^{10} + \frac{4}{17} a^{9} - \frac{1}{34} a^{8} - \frac{1}{2} a^{7} + \frac{1}{68} a^{6} - \frac{27}{68} a^{5} - \frac{5}{34} a^{4} + \frac{1}{17} a^{3} - \frac{1}{2} a^{2} + \frac{3}{68} a - \frac{5}{68}$, $\frac{1}{1317236201892985530120862262788} a^{17} - \frac{3561405801095807234668203321}{1317236201892985530120862262788} a^{16} - \frac{92619692446467646413636775167}{658618100946492765060431131394} a^{15} - \frac{70190868398820652432428139200}{329309050473246382530215565697} a^{14} + \frac{35915356927621234808759724294}{329309050473246382530215565697} a^{13} + \frac{286546598783109661902528681499}{1317236201892985530120862262788} a^{12} + \frac{626937791621208608814694740483}{1317236201892985530120862262788} a^{11} + \frac{93773493884247076471739165623}{658618100946492765060431131394} a^{10} + \frac{116923873648082125599927013705}{658618100946492765060431131394} a^{9} + \frac{111233876047520753347208704445}{658618100946492765060431131394} a^{8} + \frac{378016775514658026358599874605}{1317236201892985530120862262788} a^{7} - \frac{565642185172233415543476947691}{1317236201892985530120862262788} a^{6} - \frac{299765319309057404950205891695}{658618100946492765060431131394} a^{5} - \frac{57450690627189548307248982321}{658618100946492765060431131394} a^{4} - \frac{106030835640314337508991980030}{329309050473246382530215565697} a^{3} - \frac{361095971342691462230156512055}{1317236201892985530120862262788} a^{2} + \frac{583918841249418958787058984841}{1317236201892985530120862262788} a - \frac{183620473510064771285937644065}{658618100946492765060431131394}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 378268751.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 180 conjugacy class representatives for t18n881 are not computed |
| Character table for t18n881 is not computed |
Intermediate fields
| 3.3.564.1, 9.9.165968803220544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.19.27 | $x^{12} + 3 x^{11} + 3 x^{9} + 3 x^{8} + 3 x^{6} - 3 x^{3} + 3$ | $12$ | $1$ | $19$ | 12T38 | $[3/2, 2]_{4}^{2}$ | |
| 47 | Data not computed | ||||||