Normalized defining polynomial
\( x^{18} - 8 x^{17} + 20 x^{16} - 34 x^{15} + 77 x^{14} - 50 x^{13} - 79 x^{12} + 116 x^{11} - 329 x^{10} + 430 x^{9} + 52 x^{8} - 394 x^{7} - 268 x^{6} + 1150 x^{5} + 257 x^{4} - 1918 x^{3} + 1075 x^{2} + 382 x - 479 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3088844736629670323038191616=-\,2^{18}\cdot 101^{7}\cdot 479^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 101, 479$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{49} a^{16} - \frac{1}{49} a^{15} + \frac{9}{49} a^{14} - \frac{16}{49} a^{13} - \frac{22}{49} a^{12} + \frac{1}{7} a^{11} + \frac{9}{49} a^{10} + \frac{4}{49} a^{9} + \frac{6}{49} a^{8} + \frac{15}{49} a^{7} - \frac{2}{7} a^{6} - \frac{13}{49} a^{5} - \frac{9}{49} a^{4} + \frac{12}{49} a^{3} - \frac{15}{49} a^{2} - \frac{13}{49} a + \frac{15}{49}$, $\frac{1}{8220055885169642105158564333} a^{17} + \frac{54849001781039433564620056}{8220055885169642105158564333} a^{16} - \frac{1236062638730986309977235408}{8220055885169642105158564333} a^{15} - \frac{2965035814203572876233168405}{8220055885169642105158564333} a^{14} + \frac{2660520580305026836374191145}{8220055885169642105158564333} a^{13} + \frac{3928349330453568786581660531}{8220055885169642105158564333} a^{12} + \frac{2425131308106776334123407484}{8220055885169642105158564333} a^{11} + \frac{1201796078893094610897986695}{8220055885169642105158564333} a^{10} + \frac{3751858768417384587937544971}{8220055885169642105158564333} a^{9} - \frac{2767614249251197961994497816}{8220055885169642105158564333} a^{8} + \frac{957602414553452171281383864}{8220055885169642105158564333} a^{7} - \frac{2139356774698263511775099358}{8220055885169642105158564333} a^{6} - \frac{23140092915894729698118870}{8220055885169642105158564333} a^{5} + \frac{32375921378850559800735576}{1174293697881377443594080619} a^{4} + \frac{3442737992836283834157668477}{8220055885169642105158564333} a^{3} + \frac{1844939604569768162485900271}{8220055885169642105158564333} a^{2} + \frac{215960510882046642863524551}{1174293697881377443594080619} a + \frac{1863142902421806303592358756}{8220055885169642105158564333}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10771544.2877 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for t18n880 are not computed |
| Character table for t18n880 is not computed |
Intermediate fields
| 3.3.404.1, 9.7.31584907456.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 101 | Data not computed | ||||||
| 479 | Data not computed | ||||||