Normalized defining polynomial
\( x^{18} - 2 x^{17} - 20 x^{16} + 10 x^{15} + 140 x^{14} - 156 x^{13} - 1268 x^{12} - 1088 x^{11} + 2960 x^{10} + 4760 x^{9} - 5784 x^{8} - 12544 x^{7} + 15144 x^{6} + 46544 x^{5} + 11840 x^{4} - 51472 x^{3} - 52416 x^{2} - 17264 x - 1840 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-297122898505054710540916228096=-\,2^{18}\cdot 19^{9}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{8} a^{13} - \frac{1}{2} a^{4}$, $\frac{1}{296} a^{14} + \frac{17}{296} a^{13} + \frac{7}{74} a^{12} + \frac{1}{74} a^{11} + \frac{1}{37} a^{10} + \frac{15}{148} a^{9} - \frac{13}{74} a^{8} + \frac{1}{37} a^{7} + \frac{5}{74} a^{6} - \frac{15}{74} a^{5} - \frac{17}{74} a^{4} - \frac{10}{37} a^{3} + \frac{14}{37} a^{2} - \frac{15}{37} a + \frac{6}{37}$, $\frac{1}{296} a^{15} - \frac{1}{148} a^{13} - \frac{7}{74} a^{12} + \frac{7}{148} a^{11} - \frac{4}{37} a^{10} + \frac{15}{148} a^{9} + \frac{1}{74} a^{8} + \frac{4}{37} a^{7} + \frac{11}{74} a^{6} + \frac{8}{37} a^{5} + \frac{5}{37} a^{4} - \frac{1}{37} a^{3} + \frac{6}{37} a^{2} + \frac{2}{37} a + \frac{9}{37}$, $\frac{1}{296} a^{16} + \frac{3}{148} a^{13} - \frac{1}{74} a^{12} - \frac{3}{37} a^{11} - \frac{7}{74} a^{10} - \frac{5}{148} a^{9} - \frac{9}{37} a^{8} + \frac{15}{74} a^{7} - \frac{11}{74} a^{6} + \frac{17}{74} a^{5} - \frac{18}{37} a^{4} - \frac{14}{37} a^{3} - \frac{7}{37} a^{2} + \frac{16}{37} a + \frac{12}{37}$, $\frac{1}{59188751690328993951618824} a^{17} + \frac{57516995258974213460353}{59188751690328993951618824} a^{16} - \frac{29135867053651096228131}{59188751690328993951618824} a^{15} - \frac{1560819817019787906263}{1599695991630513350043752} a^{14} - \frac{188075788909218702995641}{59188751690328993951618824} a^{13} - \frac{518095409106550527666207}{7398593961291124243952353} a^{12} - \frac{3239001353957439574843361}{29594375845164496975809412} a^{11} - \frac{956884706451618300882251}{29594375845164496975809412} a^{10} - \frac{329770610153595955579766}{7398593961291124243952353} a^{9} - \frac{2647080514558771704402169}{14797187922582248487904706} a^{8} + \frac{26445501276318623735866}{110426775541658570805259} a^{7} - \frac{1225153540928043482207895}{14797187922582248487904706} a^{6} + \frac{64871881268984983226175}{14797187922582248487904706} a^{5} + \frac{4864904822177455155754953}{14797187922582248487904706} a^{4} - \frac{1708368498355421449046301}{7398593961291124243952353} a^{3} - \frac{2569208912703623537731777}{7398593961291124243952353} a^{2} + \frac{1760281936509945014496937}{7398593961291124243952353} a + \frac{1403887804594125135431771}{7398593961291124243952353}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 252948053.164 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 88 conjugacy class representatives for t18n656 are not computed |
| Character table for t18n656 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.62526089134336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.12.8.1 | $x^{12} - 114 x^{9} + 4332 x^{6} - 54872 x^{3} + 130321000$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 37 | Data not computed | ||||||