Normalized defining polynomial
\( x^{18} - 6 x^{17} + 3 x^{16} + 54 x^{15} - 142 x^{14} + 42 x^{13} + 265 x^{12} - 144 x^{11} - 118 x^{10} - 1310 x^{9} + 3011 x^{8} - 1396 x^{7} - 2119 x^{6} + 3380 x^{5} - 1500 x^{4} - 570 x^{3} + 972 x^{2} - 472 x + 86 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2855870434202241384378793984=-\,2^{20}\cdot 37^{6}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{14} a^{12} + \frac{3}{14} a^{11} - \frac{1}{14} a^{10} + \frac{5}{14} a^{9} - \frac{1}{2} a^{8} + \frac{1}{14} a^{7} + \frac{2}{7} a^{6} - \frac{2}{7} a^{5} + \frac{1}{7} a^{4} + \frac{3}{7} a^{3} + \frac{1}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{14} a^{13} - \frac{3}{14} a^{11} + \frac{1}{14} a^{10} - \frac{1}{14} a^{9} + \frac{1}{14} a^{8} - \frac{3}{7} a^{7} + \frac{5}{14} a^{6} - \frac{1}{7} a^{3} - \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{28} a^{14} - \frac{1}{7} a^{11} + \frac{3}{28} a^{10} - \frac{3}{7} a^{9} + \frac{2}{7} a^{8} - \frac{3}{14} a^{7} + \frac{5}{28} a^{6} + \frac{1}{14} a^{5} + \frac{1}{7} a^{4} - \frac{5}{14} a^{3} - \frac{1}{2} a^{2} - \frac{1}{7} a - \frac{3}{14}$, $\frac{1}{28} a^{15} + \frac{1}{28} a^{11} - \frac{1}{14} a^{10} - \frac{1}{2} a^{9} + \frac{2}{7} a^{8} - \frac{5}{28} a^{7} + \frac{1}{7} a^{6} - \frac{3}{7} a^{5} - \frac{1}{14} a^{4} + \frac{5}{14} a^{3} + \frac{1}{7} a^{2} - \frac{5}{14} a - \frac{2}{7}$, $\frac{1}{1036} a^{16} + \frac{9}{518} a^{15} - \frac{17}{1036} a^{14} + \frac{5}{259} a^{13} - \frac{1}{148} a^{12} + \frac{3}{37} a^{11} - \frac{31}{1036} a^{10} + \frac{17}{259} a^{9} - \frac{495}{1036} a^{8} + \frac{9}{37} a^{7} + \frac{365}{1036} a^{6} - \frac{69}{259} a^{5} - \frac{41}{518} a^{4} - \frac{11}{74} a^{3} - \frac{62}{259} a^{2} - \frac{9}{259} a + \frac{47}{518}$, $\frac{1}{2701993375205684} a^{17} + \frac{401229959477}{2701993375205684} a^{16} - \frac{3852158442535}{675498343801421} a^{15} - \frac{2650208779023}{385999053600812} a^{14} - \frac{40515192547007}{2701993375205684} a^{13} + \frac{30484010091895}{2701993375205684} a^{12} + \frac{15618631385605}{675498343801421} a^{11} - \frac{62077979633723}{385999053600812} a^{10} - \frac{1228912229003717}{2701993375205684} a^{9} + \frac{609517197345363}{2701993375205684} a^{8} - \frac{46040466965085}{1350996687602842} a^{7} + \frac{193472235976225}{2701993375205684} a^{6} + \frac{600946632832557}{1350996687602842} a^{5} - \frac{286495239781733}{1350996687602842} a^{4} - \frac{47374287008588}{96499763400203} a^{3} - \frac{40451373011199}{675498343801421} a^{2} - \frac{227714506966659}{675498343801421} a - \frac{421887878593865}{1350996687602842}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22811496.7609 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 60 conjugacy class representatives for t18n461 are not computed |
| Character table for t18n461 is not computed |
Intermediate fields
| 3.3.404.1, 3.3.148.1, 9.9.3340021539392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.2 | $x^{6} + 2 x^{3} + 2 x^{2} + 6$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 37 | Data not computed | ||||||
| $101$ | 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 101.6.3.1 | $x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 101.6.3.1 | $x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |