Properties

Label 18.8.26499645339...6464.2
Degree $18$
Signature $[8, 5]$
Discriminant $-\,2^{18}\cdot 3^{18}\cdot 7^{12}\cdot 1373^{2}$
Root discriminant $49.00$
Ramified primes $2, 3, 7, 1373$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T767

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![776, -1776, -17220, -1012, 47868, -12612, -36159, 22704, -7218, 4994, 570, -1716, -304, 342, 87, -46, -6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^16 - 46*x^15 + 87*x^14 + 342*x^13 - 304*x^12 - 1716*x^11 + 570*x^10 + 4994*x^9 - 7218*x^8 + 22704*x^7 - 36159*x^6 - 12612*x^5 + 47868*x^4 - 1012*x^3 - 17220*x^2 - 1776*x + 776)
 
gp: K = bnfinit(x^18 - 6*x^16 - 46*x^15 + 87*x^14 + 342*x^13 - 304*x^12 - 1716*x^11 + 570*x^10 + 4994*x^9 - 7218*x^8 + 22704*x^7 - 36159*x^6 - 12612*x^5 + 47868*x^4 - 1012*x^3 - 17220*x^2 - 1776*x + 776, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{16} - 46 x^{15} + 87 x^{14} + 342 x^{13} - 304 x^{12} - 1716 x^{11} + 570 x^{10} + 4994 x^{9} - 7218 x^{8} + 22704 x^{7} - 36159 x^{6} - 12612 x^{5} + 47868 x^{4} - 1012 x^{3} - 17220 x^{2} - 1776 x + 776 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2649964533923085507853361086464=-\,2^{18}\cdot 3^{18}\cdot 7^{12}\cdot 1373^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.00$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 1373$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{12} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{51271412547228067646772334444471828} a^{17} + \frac{655515769787671948106664529087395}{51271412547228067646772334444471828} a^{16} + \frac{1190449229033160847086495354833225}{25635706273614033823386167222235914} a^{15} + \frac{591482628864036899277711056636036}{12817853136807016911693083611117957} a^{14} + \frac{5579545746908736481032154904863051}{51271412547228067646772334444471828} a^{13} - \frac{11609960939485251676865104317978945}{51271412547228067646772334444471828} a^{12} + \frac{2509424048194842167732178748330699}{25635706273614033823386167222235914} a^{11} - \frac{630025849091146664516412771595904}{12817853136807016911693083611117957} a^{10} + \frac{2357883265756896119400280320787211}{12817853136807016911693083611117957} a^{9} + \frac{3544639153237679525503483790299893}{25635706273614033823386167222235914} a^{8} - \frac{10604779447989940924636916289184159}{25635706273614033823386167222235914} a^{7} - \frac{4946456633125953382561712777359767}{12817853136807016911693083611117957} a^{6} - \frac{24269068188895302706537851192321177}{51271412547228067646772334444471828} a^{5} + \frac{7922424190381870546206065715022727}{51271412547228067646772334444471828} a^{4} + \frac{1904837748455014017946397659907526}{12817853136807016911693083611117957} a^{3} - \frac{9237031825677215338882445527656557}{25635706273614033823386167222235914} a^{2} + \frac{5641566631811847311304364713343731}{12817853136807016911693083611117957} a - \frac{5440931534795936176307318319939892}{12817853136807016911693083611117957}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 326205878.803 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T767:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 82944
The 110 conjugacy class representatives for t18n767 are not computed
Character table for t18n767 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.7.148203857088.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ R ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ $18$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ $18$ ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.2$x^{6} - x^{4} - 5$$2$$3$$6$$A_4\times C_2$$[2, 2]^{6}$
2.6.6.4$x^{6} + x^{2} + 1$$2$$3$$6$$A_4\times C_2$$[2, 2, 2]^{3}$
2.6.6.2$x^{6} - x^{4} - 5$$2$$3$$6$$A_4\times C_2$$[2, 2]^{6}$
3Data not computed
7Data not computed
1373Data not computed