Normalized defining polynomial
\( x^{18} - 9 x^{17} + 33 x^{16} - 40 x^{15} - 183 x^{14} + 1061 x^{13} - 2346 x^{12} + 1445 x^{11} + 5623 x^{10} - 17254 x^{9} + 20455 x^{8} - 8579 x^{7} + 7423 x^{6} - 36360 x^{5} + 57212 x^{4} - 39414 x^{3} + 12656 x^{2} - 1794 x + 86 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-26416801516370732805503844352=-\,2^{18}\cdot 37^{7}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{4} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{3}{8} a^{10} - \frac{3}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4817815778977394047758848488} a^{17} - \frac{246332374152270799457613181}{4817815778977394047758848488} a^{16} + \frac{4537854837040599796716293}{41532894646356845239300418} a^{15} + \frac{421841445490835124199955555}{4817815778977394047758848488} a^{14} - \frac{428745879375385536888649189}{4817815778977394047758848488} a^{13} - \frac{162911381571044104133359901}{2408907889488697023879424244} a^{12} + \frac{1389540860235443990406775477}{4817815778977394047758848488} a^{11} + \frac{549741741585692740309091017}{4817815778977394047758848488} a^{10} + \frac{1029808459002170500728429251}{2408907889488697023879424244} a^{9} - \frac{253092694142888955794435849}{4817815778977394047758848488} a^{8} - \frac{2405336111556049922432802533}{4817815778977394047758848488} a^{7} + \frac{1000238972642551922674454283}{2408907889488697023879424244} a^{6} + \frac{117525111590200572539345643}{2408907889488697023879424244} a^{5} + \frac{197687387685291339244986181}{602226972372174255969856061} a^{4} - \frac{156336362156262725535714333}{2408907889488697023879424244} a^{3} + \frac{189804181396700037871283227}{2408907889488697023879424244} a^{2} - \frac{33858212813621860246913851}{83065789292713690478600836} a + \frac{110834657422626110388328935}{1204453944744348511939712122}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 64842554.956 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18432 |
| The 120 conjugacy class representatives for t18n623 are not computed |
| Character table for t18n623 is not computed |
Intermediate fields
| 3.3.148.1, 3.3.404.1, 9.9.3340021539392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.10.8 | $x^{6} + 2 x^{5} + 2$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 37 | Data not computed | ||||||
| $101$ | 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 101.6.3.1 | $x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 101.6.3.1 | $x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |