Normalized defining polynomial
\( x^{18} - 9 x^{16} - 17 x^{15} + 18 x^{14} + 285 x^{13} - 111 x^{12} - 1464 x^{11} + 648 x^{10} + 4500 x^{9} - 4254 x^{8} - 4875 x^{7} + 8868 x^{6} - 2415 x^{5} - 3648 x^{4} + 4021 x^{3} - 1818 x^{2} + 165 x + 113 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-25832232271583776997454218499=-\,3^{18}\cdot 7^{14}\cdot 29^{4}\cdot 139\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 29, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} - \frac{3}{7} a^{14} - \frac{3}{7} a^{13} + \frac{2}{7} a^{11} + \frac{2}{7} a^{10} + \frac{3}{7} a^{9} + \frac{3}{7} a^{8} - \frac{2}{7} a^{7} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{14} a^{16} + \frac{1}{7} a^{14} + \frac{5}{14} a^{13} + \frac{1}{7} a^{12} - \frac{3}{7} a^{11} - \frac{5}{14} a^{10} - \frac{1}{7} a^{9} - \frac{1}{2} a^{8} - \frac{3}{7} a^{7} + \frac{5}{14} a^{6} - \frac{1}{14} a^{5} + \frac{5}{14} a^{4} - \frac{3}{7} a^{3} + \frac{3}{14} a^{2} - \frac{3}{14} a + \frac{3}{14}$, $\frac{1}{276691693468234702432180532} a^{17} + \frac{628939053996072478338879}{276691693468234702432180532} a^{16} - \frac{3934496536672088514448465}{69172923367058675608045133} a^{15} + \frac{8802733887610387898472651}{276691693468234702432180532} a^{14} - \frac{15002461811546205061568397}{276691693468234702432180532} a^{13} + \frac{2738732331978940750525729}{19763692390588193030870038} a^{12} + \frac{101936393095847573577070831}{276691693468234702432180532} a^{11} + \frac{24271645227615129214362957}{276691693468234702432180532} a^{10} - \frac{23725286023413583792842173}{276691693468234702432180532} a^{9} - \frac{124957756538630376109548391}{276691693468234702432180532} a^{8} + \frac{35128065220640562533985533}{276691693468234702432180532} a^{7} + \frac{2532638741770624723032929}{9881846195294096515435019} a^{6} + \frac{11337245778631151768995248}{69172923367058675608045133} a^{5} - \frac{57253336892860283649988259}{276691693468234702432180532} a^{4} - \frac{135994547002645397234129}{9541092878214989739040708} a^{3} - \frac{40774698298426305491557583}{138345846734117351216090266} a^{2} - \frac{23870521444683689517940680}{69172923367058675608045133} a - \frac{100284043851800288300145131}{276691693468234702432180532}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40203580.4379 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n766 are not computed |
| Character table for t18n766 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.13632439166829.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | $18$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $139$ | 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 139.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |