Normalized defining polynomial
\( x^{18} - 3 x^{17} + 6 x^{16} - 24 x^{15} - 7 x^{14} + 68 x^{13} + 28 x^{12} + 588 x^{11} - 156 x^{10} - 2140 x^{9} - 3995 x^{8} + 885 x^{7} + 17305 x^{6} + 6043 x^{5} - 22196 x^{4} - 8113 x^{3} + 9865 x^{2} + 540 x - 395 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-25714246772186866958120960000=-\,2^{14}\cdot 5^{4}\cdot 37^{8}\cdot 59^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{52} a^{15} + \frac{5}{26} a^{14} - \frac{25}{52} a^{13} + \frac{3}{13} a^{12} + \frac{4}{13} a^{11} - \frac{23}{52} a^{10} + \frac{5}{52} a^{9} + \frac{3}{13} a^{8} - \frac{7}{26} a^{7} - \frac{15}{52} a^{6} - \frac{5}{13} a^{5} - \frac{5}{26} a^{4} - \frac{9}{26} a^{3} - \frac{21}{52} a^{2} - \frac{21}{52} a + \frac{25}{52}$, $\frac{1}{104} a^{16} - \frac{1}{104} a^{15} - \frac{31}{104} a^{14} - \frac{25}{104} a^{13} + \frac{5}{13} a^{12} - \frac{43}{104} a^{11} - \frac{1}{52} a^{10} + \frac{9}{104} a^{9} - \frac{21}{52} a^{8} - \frac{17}{104} a^{7} + \frac{41}{104} a^{6} - \frac{25}{52} a^{5} - \frac{3}{26} a^{4} - \frac{31}{104} a^{3} - \frac{25}{52} a^{2} - \frac{1}{26} a + \frac{37}{104}$, $\frac{1}{224035164684937242905803965461720} a^{17} + \frac{158992201693396001394663814367}{56008791171234310726450991365430} a^{16} + \frac{227278678989631689926740957741}{56008791171234310726450991365430} a^{15} - \frac{1094819066548534384551442727177}{11201758234246862145290198273086} a^{14} + \frac{24253490930205462049239373495803}{224035164684937242905803965461720} a^{13} - \frac{104765207474740783578748128267139}{224035164684937242905803965461720} a^{12} - \frac{41710894406988740462865091844441}{224035164684937242905803965461720} a^{11} + \frac{27621017709057935904152346448087}{224035164684937242905803965461720} a^{10} - \frac{76226805804267650412390836713229}{224035164684937242905803965461720} a^{9} + \frac{53110840213975221042889393564821}{224035164684937242905803965461720} a^{8} - \frac{1929503284163087827684765032851}{56008791171234310726450991365430} a^{7} + \frac{100982970629218755476876058477731}{224035164684937242905803965461720} a^{6} + \frac{51198183080516180442276211164293}{112017582342468621452901982730860} a^{5} + \frac{39944682964976014787874425069989}{224035164684937242905803965461720} a^{4} - \frac{63646692725841409097148120330837}{224035164684937242905803965461720} a^{3} - \frac{9715218225922817583422332477439}{22403516468493724290580396546172} a^{2} - \frac{16315704069620198288459014947595}{44807032936987448581160793092344} a - \frac{9700368683009820371888825690195}{44807032936987448581160793092344}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 78143279.3369 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n772 are not computed |
| Character table for t18n772 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.10438327105600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.12.6.1 | $x^{12} + 2026120 x^{6} - 69343957 x^{2} + 1026290563600$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $59$ | 59.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 59.6.5.2 | $x^{6} + 177$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 59.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |