Normalized defining polynomial
\( x^{18} - 6 x^{17} + 20 x^{16} - 19 x^{15} - 90 x^{14} + 448 x^{13} - 996 x^{12} + 978 x^{11} + 624 x^{10} - 4011 x^{9} + 6096 x^{8} - 3930 x^{7} - 468 x^{6} + 2208 x^{5} + 5544 x^{4} - 8442 x^{3} - 1971 x^{2} + 4212 x - 729 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24016377523022084006997112107=-\,3^{11}\cdot 53^{4}\cdot 107^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 53, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{8}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{4}{9} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{27} a^{16} + \frac{2}{27} a^{14} + \frac{2}{27} a^{13} + \frac{1}{9} a^{12} - \frac{2}{27} a^{11} + \frac{1}{3} a^{10} + \frac{2}{9} a^{9} + \frac{4}{9} a^{8} + \frac{1}{9} a^{7} + \frac{4}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{80408379877379507212381910133} a^{17} + \frac{135492907281284214288722161}{8934264430819945245820212237} a^{16} - \frac{1144753411490954425708478638}{80408379877379507212381910133} a^{15} + \frac{12723470381850353138529003818}{80408379877379507212381910133} a^{14} + \frac{1177751481865174181499516961}{26802793292459835737460636711} a^{13} - \frac{225916184203974334300096622}{80408379877379507212381910133} a^{12} - \frac{19766664019978434815473528}{992696047868882805091134693} a^{11} + \frac{7467096681375975870774412133}{26802793292459835737460636711} a^{10} + \frac{2219398217752831000523872339}{26802793292459835737460636711} a^{9} + \frac{9332959092142280426336986264}{26802793292459835737460636711} a^{8} + \frac{1685908791209370880196216383}{26802793292459835737460636711} a^{7} - \frac{8244228001477229006642920979}{26802793292459835737460636711} a^{6} + \frac{1021808523886202567639337280}{8934264430819945245820212237} a^{5} + \frac{4383625420991599397945802097}{26802793292459835737460636711} a^{4} - \frac{1257319402211683780952827298}{2978088143606648415273404079} a^{3} + \frac{1124254173354680905473501727}{8934264430819945245820212237} a^{2} + \frac{475778109639255512494420042}{2978088143606648415273404079} a - \frac{1687367766136688071856424}{330898682622960935030378231}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 167958858.233 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 180 conjugacy class representatives for t18n881 are not computed |
| Character table for t18n881 is not computed |
Intermediate fields
| 3.3.321.1, 9.9.29824410535929.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| 53 | Data not computed | ||||||
| 107 | Data not computed | ||||||