Normalized defining polynomial
\( x^{18} + 18 x^{16} - 48 x^{15} + 72 x^{14} - 342 x^{13} - 411 x^{12} + 468 x^{11} - 6480 x^{10} + 20816 x^{9} - 22680 x^{8} + 44892 x^{7} + 108897 x^{6} - 331110 x^{5} - 11358 x^{4} + 366870 x^{3} - 125676 x^{2} - 58104 x + 17557 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-238264658842842191797270155214848=-\,2^{14}\cdot 3^{36}\cdot 7^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{84} a^{14} - \frac{1}{42} a^{13} + \frac{1}{28} a^{12} - \frac{1}{14} a^{11} + \frac{5}{42} a^{10} - \frac{3}{7} a^{8} + \frac{1}{14} a^{7} + \frac{3}{14} a^{6} + \frac{17}{42} a^{5} - \frac{19}{42} a^{4} - \frac{9}{28} a^{2} - \frac{19}{42} a + \frac{3}{28}$, $\frac{1}{84} a^{15} - \frac{1}{84} a^{13} - \frac{1}{42} a^{11} - \frac{2}{21} a^{10} - \frac{2}{21} a^{9} + \frac{3}{14} a^{8} + \frac{5}{14} a^{7} - \frac{1}{6} a^{6} + \frac{5}{14} a^{5} + \frac{2}{21} a^{4} - \frac{9}{28} a^{3} - \frac{2}{21} a^{2} - \frac{11}{84} a - \frac{19}{42}$, $\frac{1}{8232} a^{16} - \frac{5}{2744} a^{15} - \frac{3}{1372} a^{14} + \frac{1}{392} a^{13} + \frac{113}{2744} a^{12} - \frac{163}{1029} a^{11} + \frac{107}{1372} a^{10} - \frac{421}{4116} a^{9} + \frac{269}{686} a^{8} - \frac{1333}{4116} a^{7} - \frac{333}{1372} a^{6} - \frac{130}{343} a^{5} + \frac{717}{2744} a^{4} - \frac{605}{2744} a^{3} + \frac{407}{1029} a^{2} - \frac{881}{2744} a + \frac{3973}{8232}$, $\frac{1}{1059494980382538095210646075174058024344} a^{17} - \frac{1643425338098370418155823849263302}{44145624182605753967110253132252417681} a^{16} - \frac{760314850797435162739781706187636171}{1059494980382538095210646075174058024344} a^{15} - \frac{684964933701394448440371867244927757}{353164993460846031736882025058019341448} a^{14} + \frac{29912971648383360976861169845376786533}{529747490191269047605323037587029012172} a^{13} + \frac{10363975903278390251765581273530473753}{353164993460846031736882025058019341448} a^{12} + \frac{72147835260097851665105503410245465215}{529747490191269047605323037587029012172} a^{11} - \frac{12166666866674023067796585516755015186}{132436872547817261901330759396757253043} a^{10} + \frac{8375616045997126980197470060837887805}{75678212884467006800760433941004144596} a^{9} - \frac{46565837312539397232764618871802630795}{529747490191269047605323037587029012172} a^{8} + \frac{3928317870204871752655777803704626433}{44145624182605753967110253132252417681} a^{7} - \frac{232589910854893830312793842898061569763}{529747490191269047605323037587029012172} a^{6} + \frac{32138872987335407685182025936553613993}{353164993460846031736882025058019341448} a^{5} + \frac{89091188769533823288844695482223731047}{529747490191269047605323037587029012172} a^{4} - \frac{14257738121602828920116656948118983693}{50452141922978004533840289294002763064} a^{3} + \frac{26901698614666074143738122555220850209}{151356425768934013601520867882008289192} a^{2} + \frac{49187454625856277842938226195482726211}{264873745095634523802661518793514506086} a - \frac{272782187523456731718865440604646181979}{1059494980382538095210646075174058024344}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10348804184.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |