Normalized defining polynomial
\( x^{18} - 12 x^{16} - 8 x^{15} - 18 x^{14} - 24 x^{13} + 502 x^{12} + 1188 x^{11} - 363 x^{10} - 2376 x^{9} - 4662 x^{8} - 18684 x^{7} - 14887 x^{6} + 44820 x^{5} + 86280 x^{4} + 9280 x^{3} - 39600 x^{2} - 14400 x + 8000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2366152515496237836064260096000000=-\,2^{24}\cdot 3^{18}\cdot 5^{6}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{280} a^{15} - \frac{1}{14} a^{14} - \frac{3}{70} a^{13} + \frac{1}{140} a^{12} + \frac{3}{70} a^{11} - \frac{3}{35} a^{10} + \frac{11}{140} a^{9} - \frac{1}{140} a^{8} + \frac{27}{280} a^{7} - \frac{9}{20} a^{6} + \frac{11}{35} a^{5} + \frac{9}{70} a^{4} - \frac{127}{280} a^{3} + \frac{1}{7} a^{2} + \frac{1}{14} a - \frac{2}{7}$, $\frac{1}{560} a^{16} + \frac{1}{70} a^{14} - \frac{1}{20} a^{13} - \frac{9}{280} a^{12} - \frac{4}{35} a^{11} - \frac{19}{280} a^{10} - \frac{13}{140} a^{9} + \frac{57}{560} a^{8} - \frac{19}{140} a^{7} + \frac{9}{280} a^{6} + \frac{16}{35} a^{5} + \frac{33}{560} a^{4} - \frac{3}{14} a^{3} - \frac{2}{7} a^{2} + \frac{1}{14} a + \frac{1}{7}$, $\frac{1}{942261195133913643515171327200} a^{17} - \frac{6053949493919529522525341}{11778264939173920543939641590} a^{16} - \frac{201122167192564813848320013}{235565298783478410878792831800} a^{15} - \frac{7756190116300414670977678731}{117782649391739205439396415900} a^{14} - \frac{29976403131722860770802160849}{471130597566956821757585663600} a^{13} + \frac{2086184817563344705153697067}{117782649391739205439396415900} a^{12} - \frac{57890331548256904662668496729}{471130597566956821757585663600} a^{11} - \frac{872452564112241639558249179}{33652185540496915839827547400} a^{10} + \frac{11050287085620080565713979317}{942261195133913643515171327200} a^{9} + \frac{5349996406555780651088112343}{117782649391739205439396415900} a^{8} + \frac{1423784538869753477942282069}{471130597566956821757585663600} a^{7} - \frac{53155134735807815260805436721}{235565298783478410878792831800} a^{6} - \frac{61168363688451774142176322687}{942261195133913643515171327200} a^{5} + \frac{23406038988806427868477513807}{47113059756695682175758566360} a^{4} + \frac{3769529072669527646495336127}{11778264939173920543939641590} a^{3} + \frac{2493653849726554860815648583}{5889132469586960271969820795} a^{2} + \frac{67423341448412344630513246}{1177826493917392054393964159} a + \frac{281747912762774517799487677}{1177826493917392054393964159}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21652949121.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 267 conjugacy class representatives for t18n926 are not computed |
| Character table for t18n926 is not computed |
Intermediate fields
| 3.3.169.1, 6.4.9139520.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.12.18.30 | $x^{12} - 2 x^{11} - 4 x^{10} - 4 x^{9} + 2 x^{8} + 4 x^{7} + 8 x^{5} + 8$ | $4$ | $3$ | $18$ | 12T142 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| $3$ | 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ |
| 3.9.9.8 | $x^{9} + 6 x^{7} + 18 x^{3} + 27$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |