Normalized defining polynomial
\( x^{18} - 3 x^{16} - 25 x^{15} - 12 x^{14} + 117 x^{13} - 16 x^{12} + 297 x^{11} - 714 x^{10} + 2145 x^{9} - 1701 x^{8} - 5955 x^{7} + 4939 x^{6} + 4692 x^{5} - 4752 x^{4} - 1028 x^{3} + 2232 x^{2} + 156 x - 292 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-235551134719659407332009946112=-\,2^{10}\cdot 3^{23}\cdot 367^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{3} a^{8} + \frac{1}{6} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{13} + \frac{1}{18} a^{12} + \frac{1}{18} a^{11} - \frac{1}{9} a^{10} + \frac{1}{18} a^{9} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{4}{9} a^{5} - \frac{2}{9} a^{4} + \frac{5}{18} a^{3} - \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{1}{9}$, $\frac{1}{90} a^{15} + \frac{1}{90} a^{14} + \frac{7}{90} a^{13} - \frac{1}{18} a^{12} - \frac{1}{18} a^{11} + \frac{1}{9} a^{10} + \frac{1}{10} a^{9} + \frac{7}{30} a^{8} - \frac{2}{15} a^{7} - \frac{11}{45} a^{6} + \frac{4}{45} a^{5} - \frac{13}{90} a^{4} + \frac{7}{18} a^{3} + \frac{1}{45} a^{2} + \frac{4}{45} a + \frac{1}{5}$, $\frac{1}{180} a^{16} + \frac{1}{180} a^{14} + \frac{13}{180} a^{13} + \frac{1}{18} a^{12} - \frac{1}{36} a^{11} + \frac{2}{15} a^{10} - \frac{23}{180} a^{9} + \frac{1}{15} a^{8} - \frac{17}{36} a^{7} + \frac{5}{12} a^{6} + \frac{89}{180} a^{5} - \frac{37}{180} a^{4} - \frac{7}{45} a^{3} + \frac{14}{45} a^{2} + \frac{1}{6} a - \frac{22}{45}$, $\frac{1}{14661664278692911097220} a^{17} + \frac{10780289496229323121}{14661664278692911097220} a^{16} - \frac{2303853382007957371}{2932332855738582219444} a^{15} + \frac{19287657054788980544}{1221805356557742591435} a^{14} + \frac{113507161245368715277}{4887221426230970365740} a^{13} - \frac{56094125745497393911}{977444285246194073148} a^{12} + \frac{387332939027956212509}{14661664278692911097220} a^{11} + \frac{2214510320102045368211}{14661664278692911097220} a^{10} - \frac{108482540146658532779}{2932332855738582219444} a^{9} - \frac{3672902349980876335339}{14661664278692911097220} a^{8} + \frac{565507126836848593643}{3665416069673227774305} a^{7} + \frac{275781017089077645943}{7330832139346455548610} a^{6} + \frac{878101820905664408099}{2443610713115485182870} a^{5} - \frac{1625263086915325806469}{4887221426230970365740} a^{4} + \frac{431727912770550966793}{2443610713115485182870} a^{3} + \frac{928889845002733093877}{7330832139346455548610} a^{2} + \frac{2899896094411805393717}{7330832139346455548610} a + \frac{314553007250814542116}{3665416069673227774305}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 509181601.299 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n769 are not computed |
| Character table for t18n769 is not computed |
Intermediate fields
| 3.3.1101.1, 9.9.35026116351444.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | $18$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.10.2 | $x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| $3$ | 3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ |
| 3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
| 3.12.13.4 | $x^{12} - 3 x^{10} + 3 x^{6} - 3 x^{5} + 3 x^{4} - 3 x^{2} - 3$ | $12$ | $1$ | $13$ | 12T36 | $[5/4, 5/4]_{4}^{2}$ | |
| 367 | Data not computed | ||||||