Properties

Label 18.8.21781613448...4959.2
Degree $18$
Signature $[8, 5]$
Discriminant $-\,7^{12}\cdot 53^{6}\cdot 71$
Root discriminant $17.42$
Ramified primes $7, 53, 71$
Class number $1$
Class group Trivial
Galois group 18T544

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -3, 15, -8, -15, 17, -3, 11, -23, 11, -3, 17, -15, -8, 15, -3, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 3*x^16 + 15*x^15 - 8*x^14 - 15*x^13 + 17*x^12 - 3*x^11 + 11*x^10 - 23*x^9 + 11*x^8 - 3*x^7 + 17*x^6 - 15*x^5 - 8*x^4 + 15*x^3 - 3*x^2 - 3*x + 1)
 
gp: K = bnfinit(x^18 - 3*x^17 - 3*x^16 + 15*x^15 - 8*x^14 - 15*x^13 + 17*x^12 - 3*x^11 + 11*x^10 - 23*x^9 + 11*x^8 - 3*x^7 + 17*x^6 - 15*x^5 - 8*x^4 + 15*x^3 - 3*x^2 - 3*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{17} - 3 x^{16} + 15 x^{15} - 8 x^{14} - 15 x^{13} + 17 x^{12} - 3 x^{11} + 11 x^{10} - 23 x^{9} + 11 x^{8} - 3 x^{7} + 17 x^{6} - 15 x^{5} - 8 x^{4} + 15 x^{3} - 3 x^{2} - 3 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-21781613448935042304959=-\,7^{12}\cdot 53^{6}\cdot 71\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.42$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 53, 71$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} + \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{16} a^{16} - \frac{1}{16} a^{13} + \frac{5}{16} a^{12} - \frac{3}{16} a^{11} + \frac{7}{16} a^{10} - \frac{7}{16} a^{9} - \frac{5}{16} a^{8} + \frac{5}{16} a^{7} - \frac{5}{16} a^{6} - \frac{3}{16} a^{5} - \frac{7}{16} a^{4} + \frac{3}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{5}{16}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{14} + \frac{5}{16} a^{13} - \frac{3}{16} a^{12} + \frac{7}{16} a^{11} - \frac{7}{16} a^{10} - \frac{5}{16} a^{9} + \frac{5}{16} a^{8} - \frac{5}{16} a^{7} - \frac{3}{16} a^{6} - \frac{7}{16} a^{5} + \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{5}{16} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 17680.4804353 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T544:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 9216
The 96 conjugacy class representatives for t18n544 are not computed
Character table for t18n544 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 3.3.2597.1, 9.9.17515230173.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ R ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
$53$53.6.3.1$x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
53.6.3.1$x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
53.6.0.1$x^{6} - x + 8$$1$$6$$0$$C_6$$[\ ]^{6}$
$71$$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
71.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$