Normalized defining polynomial
\( x^{18} - 6 x^{17} + 18 x^{16} - 8 x^{15} - 129 x^{14} + 234 x^{13} + 184 x^{12} - 648 x^{11} - 201 x^{10} + 1230 x^{9} + 1434 x^{8} - 2088 x^{7} + 1233 x^{6} + 3150 x^{5} - 13140 x^{4} - 13704 x^{3} + 2328 x^{2} + 3264 x - 368 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2091071103330860227371422711808=-\,2^{26}\cdot 3^{24}\cdot 37^{6}\cdot 43\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{3}{16} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{32} a^{14} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} - \frac{7}{32} a^{6} + \frac{1}{16} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{14} - \frac{1}{32} a^{13} - \frac{1}{32} a^{11} + \frac{1}{32} a^{10} + \frac{1}{16} a^{8} - \frac{7}{64} a^{7} + \frac{15}{64} a^{6} - \frac{3}{32} a^{5} - \frac{3}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{128} a^{16} - \frac{1}{128} a^{14} + \frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{16} a^{11} - \frac{1}{64} a^{10} + \frac{1}{32} a^{9} - \frac{11}{128} a^{8} + \frac{11}{128} a^{6} - \frac{11}{64} a^{5} + \frac{7}{32} a^{4} - \frac{5}{16} a^{3} + \frac{7}{16} a^{2} - \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{763608937148218946944} a^{17} - \frac{2076997478714341161}{763608937148218946944} a^{16} - \frac{2719114046838296495}{763608937148218946944} a^{15} - \frac{11869688170106899243}{763608937148218946944} a^{14} - \frac{422778393434333335}{95451117143527368368} a^{13} + \frac{8833695635165883389}{381804468574109473472} a^{12} + \frac{17429930249446742853}{381804468574109473472} a^{11} - \frac{1965714664528376271}{381804468574109473472} a^{10} - \frac{41364218674290159575}{763608937148218946944} a^{9} + \frac{36699914238128371675}{763608937148218946944} a^{8} - \frac{63935434665678319323}{763608937148218946944} a^{7} - \frac{149313399755002907695}{763608937148218946944} a^{6} + \frac{39306591385941435967}{381804468574109473472} a^{5} - \frac{35809105154607017815}{190902234287054736736} a^{4} - \frac{11675384779251761291}{23862779285881842092} a^{3} + \frac{29965156007569310447}{95451117143527368368} a^{2} - \frac{21608611313377389725}{47725558571763684184} a + \frac{4767060037293715987}{47725558571763684184}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1620692441.21 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 55296 |
| The 120 conjugacy class representatives for t18n734 are not computed |
| Character table for t18n734 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 43 | Data not computed | ||||||