Normalized defining polynomial
\( x^{18} - 3 x^{17} - 12 x^{16} + 48 x^{15} + 42 x^{14} - 363 x^{13} + 384 x^{12} + 594 x^{11} - 2184 x^{10} + 2885 x^{9} - 654 x^{8} - 4608 x^{7} + 8631 x^{6} - 7926 x^{5} + 4356 x^{4} - 1212 x^{3} - 96 x^{2} + 120 x - 4 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-19629261226638283944334162176=-\,2^{8}\cdot 3^{22}\cdot 367^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{12} - \frac{1}{3} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{3} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{12} + \frac{1}{12} a^{11} - \frac{1}{2} a^{10} - \frac{1}{3} a^{9} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} + \frac{5}{12} a^{5} + \frac{1}{4} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} + \frac{1}{6} a^{10} - \frac{1}{2} a^{8} + \frac{1}{3} a^{7} - \frac{5}{12} a^{6} + \frac{1}{4} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{16} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{4} a^{11} - \frac{1}{3} a^{9} + \frac{1}{12} a^{7} - \frac{5}{12} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{1396139640677412} a^{17} + \frac{1383150233711}{232689940112902} a^{16} - \frac{12334760202713}{465379880225804} a^{15} + \frac{26732287735823}{698069820338706} a^{14} + \frac{40619933781505}{698069820338706} a^{13} + \frac{47724307281611}{1396139640677412} a^{12} - \frac{130615823772481}{1396139640677412} a^{11} + \frac{35114785315117}{698069820338706} a^{10} + \frac{125710030191194}{349034910169353} a^{9} + \frac{22379016344885}{1396139640677412} a^{8} + \frac{66770135451859}{1396139640677412} a^{7} - \frac{164727986785067}{349034910169353} a^{6} - \frac{227898525269837}{1396139640677412} a^{5} + \frac{356074719625507}{1396139640677412} a^{4} + \frac{150848415509663}{698069820338706} a^{3} - \frac{489359255149}{116344970056451} a^{2} + \frac{121608373404715}{698069820338706} a - \frac{12205400807671}{349034910169353}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 129005289.912 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 192 conjugacy class representatives for t18n882 are not computed |
| Character table for t18n882 is not computed |
Intermediate fields
| 3.3.1101.1, 9.9.35026116351444.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $3$ | 3.6.10.3 | $x^{6} + 36$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.12.12.28 | $x^{12} + 12 x^{11} - 3 x^{10} + 3 x^{9} + 3 x^{8} + 6 x^{7} + 12 x^{6} + 9 x^{5} + 9 x^{4} + 9 x + 9$ | $6$ | $2$ | $12$ | 12T34 | $[5/4, 5/4]_{4}^{2}$ | |
| 367 | Data not computed | ||||||