Normalized defining polynomial
\( x^{18} - 3 x^{17} + 39 x^{16} + 81 x^{15} - 1377 x^{14} + 12393 x^{13} - 36342 x^{12} - 22953 x^{11} + 783678 x^{10} - 4048559 x^{9} + 9075627 x^{8} + 1377153 x^{7} - 82704276 x^{6} + 322084668 x^{5} - 743501424 x^{4} + 1159443999 x^{3} - 1160177862 x^{2} + 637697091 x - 141570217 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-195977188797288322153846057926340608=-\,2^{12}\cdot 3^{30}\cdot 7^{6}\cdot 12547^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 12547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{89} a^{16} + \frac{22}{89} a^{15} - \frac{1}{89} a^{14} - \frac{19}{89} a^{13} - \frac{16}{89} a^{12} - \frac{26}{89} a^{11} + \frac{38}{89} a^{10} + \frac{12}{89} a^{9} - \frac{15}{89} a^{8} - \frac{17}{89} a^{7} + \frac{29}{89} a^{5} - \frac{34}{89} a^{4} + \frac{5}{89} a^{3} + \frac{19}{89} a^{2} - \frac{13}{89} a + \frac{7}{89}$, $\frac{1}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{17} - \frac{372299696028322694019302358010070094030715999850951613832058899427239}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{16} + \frac{117530633781237582115574231587185882442690724844291853152121376934956172}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{15} - \frac{67052310234029555877625208291716370713646177654608257706520570860234376}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{14} - \frac{3965801405112933833095215202036064016472732206185133534635448603996115}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{13} + \frac{1109757777528637617462675851986452868705770070773955807324424316353756}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{12} + \frac{86619397189736092024064274449407955560405723687554181255559627571516380}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{11} - \frac{113289914876391260894602806809473748217172626918750046697422804492425693}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{10} - \frac{96722375552132960208170831353645323230363358685855066677673150983234111}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{9} + \frac{67344169503163051289249098462980022562432308521829506014016871689145798}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{8} + \frac{89558024371120301260895271994825472535920769185027278774242965061579838}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{7} - \frac{30088189071486786783581140280883188204955013129817200781726639732511633}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{6} + \frac{57576103572459108269865799540984295090240216141107961114124065031935804}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{5} + \frac{87267843649993863009828676167330601878132060602874057736860178182063917}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{4} + \frac{23705612492680673268694493639727892710347063356816623664847940519417288}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{3} + \frac{85655169667193730716023216019785098664829581345173250582074221349131715}{285727962069640093307827393894032875281021843851189577586934495904802831} a^{2} + \frac{4314549801855909478673146746425487617066921337881015731994838669643062}{285727962069640093307827393894032875281021843851189577586934495904802831} a - \frac{96111683339639216413089957717962544380661372295389117284517872144276475}{285727962069640093307827393894032875281021843851189577586934495904802831}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70064262840.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 48 conjugacy class representatives for t18n366 |
| Character table for t18n366 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.756.1, 9.9.314987206464.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 12547 | Data not computed | ||||||