Normalized defining polynomial
\( x^{18} - 63 x^{16} - 249 x^{15} - 873 x^{14} + 5403 x^{13} + 53031 x^{12} + 207387 x^{11} + 230385 x^{10} - 1174006 x^{9} - 7474338 x^{8} - 20503479 x^{7} - 32868075 x^{6} - 33240231 x^{5} + 2811813 x^{4} + 35668848 x^{3} + 63884925 x^{2} + 33278943 x + 3707657 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-195977188797288322153846057926340608=-\,2^{12}\cdot 3^{30}\cdot 7^{6}\cdot 12547^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 12547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{17} - \frac{59507104286251477370213613568255313582175188155038917724277804912801095991}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{16} - \frac{62472379844403444402197106128044168785871833582637313983076042680477669004}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{15} + \frac{62319321055518715098946242251602766701398130824530492279594794805373898238}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{14} + \frac{25951708796097508587190505477926285598508599554196121570246063515608102292}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{13} + \frac{65001721779137157925390510758767184004238147615271759882421208973271914393}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{12} - \frac{59836774333715156982133702972776791513704638933690633665427937123756020591}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{11} + \frac{40764338908897699883359430164003734862839222139684415388722758602934536374}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{10} + \frac{36485519038206993175279702077882122955565331806347320565175442832232508762}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{9} - \frac{56896151515747654671523659572120219737999179040197900767400196963353955654}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{8} + \frac{39960943613069611446213379674161965957345984891475556550623176893963419599}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{7} - \frac{56902351650693402210656463619505127986183928925151797578159503861197526072}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{6} + \frac{63268710847647341705624525877721104506632614913483859904090374050627824119}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{5} + \frac{58101210767515129901470574881739000914237064412275630475364053389047388989}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{4} - \frac{26867166085457997295433827974081249978453833809659781974591350813491827987}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{3} + \frac{54140594171954496458770958573381157927042360569697754268866385957554246973}{156949857571780035852601582553348845667100675110189686360993840612226343299} a^{2} + \frac{64592631081694070810374446647460260234724497873754038014095023213268425475}{156949857571780035852601582553348845667100675110189686360993840612226343299} a + \frac{5610469896767334318971210577868355986115492580968476748930843348327173963}{156949857571780035852601582553348845667100675110189686360993840612226343299}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59209132152.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 48 conjugacy class representatives for t18n366 |
| Character table for t18n366 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.756.1, 9.9.314987206464.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 12547 | Data not computed | ||||||