Normalized defining polynomial
\( x^{18} - 9 x^{17} + 21 x^{16} + 22 x^{15} - 120 x^{14} + 27 x^{13} + 145 x^{12} + 84 x^{11} - 30 x^{10} - 604 x^{9} + 63 x^{8} + 975 x^{7} - 62 x^{6} - 705 x^{5} + 489 x^{4} + 375 x^{3} - 243 x^{2} - 99 x + 13 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15425002003895348854594965003=-\,3^{18}\cdot 7^{14}\cdot 29^{4}\cdot 83\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 29, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{42} a^{12} - \frac{1}{14} a^{11} - \frac{5}{42} a^{10} - \frac{1}{7} a^{9} + \frac{2}{7} a^{8} + \frac{1}{3} a^{7} - \frac{1}{42} a^{6} - \frac{3}{7} a^{5} + \frac{3}{14} a^{4} + \frac{8}{21} a^{3} + \frac{1}{14} a^{2} - \frac{1}{3} a + \frac{13}{42}$, $\frac{1}{42} a^{13} - \frac{1}{6} a^{10} - \frac{1}{7} a^{9} - \frac{1}{7} a^{8} - \frac{5}{14} a^{7} - \frac{1}{2} a^{6} - \frac{1}{14} a^{5} + \frac{1}{42} a^{4} + \frac{3}{14} a^{3} + \frac{3}{14} a^{2} - \frac{5}{14} a - \frac{1}{14}$, $\frac{1}{42} a^{14} - \frac{1}{6} a^{11} - \frac{1}{7} a^{10} - \frac{1}{7} a^{9} - \frac{5}{14} a^{8} - \frac{1}{2} a^{7} - \frac{1}{14} a^{6} + \frac{1}{42} a^{5} + \frac{3}{14} a^{4} + \frac{3}{14} a^{3} - \frac{5}{14} a^{2} - \frac{1}{14} a$, $\frac{1}{294} a^{15} + \frac{1}{294} a^{14} - \frac{1}{294} a^{12} + \frac{25}{294} a^{11} + \frac{1}{21} a^{10} + \frac{41}{294} a^{9} + \frac{32}{147} a^{8} + \frac{44}{147} a^{7} - \frac{53}{147} a^{6} + \frac{5}{21} a^{5} + \frac{5}{49} a^{4} - \frac{6}{49} a^{3} - \frac{8}{21} a^{2} + \frac{137}{294} a - \frac{59}{147}$, $\frac{1}{294} a^{16} - \frac{1}{294} a^{14} - \frac{1}{294} a^{13} - \frac{1}{147} a^{12} - \frac{25}{294} a^{11} - \frac{29}{294} a^{10} - \frac{5}{294} a^{9} + \frac{40}{147} a^{8} - \frac{16}{49} a^{7} + \frac{53}{147} a^{6} - \frac{62}{147} a^{5} - \frac{4}{49} a^{4} + \frac{32}{147} a^{3} + \frac{67}{294} a^{2} - \frac{59}{294} a + \frac{73}{147}$, $\frac{1}{59621965832982} a^{17} - \frac{39729850486}{29810982916491} a^{16} + \frac{46295181908}{29810982916491} a^{15} - \frac{39452287310}{4258711845213} a^{14} - \frac{237853804822}{29810982916491} a^{13} + \frac{165107219743}{19873988610994} a^{12} + \frac{100690730715}{19873988610994} a^{11} + \frac{1874127735065}{29810982916491} a^{10} - \frac{9866346297737}{59621965832982} a^{9} + \frac{12102351092303}{29810982916491} a^{8} - \frac{3920139365797}{29810982916491} a^{7} + \frac{8999101701017}{59621965832982} a^{6} - \frac{4043910625295}{9936994305497} a^{5} + \frac{128773862669}{59621965832982} a^{4} + \frac{4477454756365}{59621965832982} a^{3} + \frac{499961118217}{1419570615071} a^{2} - \frac{5694687982589}{19873988610994} a + \frac{4214861689067}{59621965832982}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38618166.4991 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n766 are not computed |
| Character table for t18n766 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.13632439166829.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | $18$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ |
| 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.6.4.1 | $x^{6} + 232 x^{3} + 22707$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $83$ | 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.6.0.1 | $x^{6} - x + 34$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 83.6.0.1 | $x^{6} - x + 34$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |