Normalized defining polynomial
\( x^{18} - 4 x^{17} - 16 x^{16} + 82 x^{15} + 65 x^{14} - 642 x^{13} - 18 x^{12} + 3076 x^{11} - 561 x^{10} - 11479 x^{9} + 4023 x^{8} + 30868 x^{7} - 12276 x^{6} - 62804 x^{5} + 29206 x^{4} + 80746 x^{3} - 39498 x^{2} - 42537 x + 559 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1519118496790264747045229351=-\,7^{12}\cdot 97^{2}\cdot 22679^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 97, 22679$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{113} a^{16} + \frac{7}{113} a^{15} + \frac{41}{113} a^{14} + \frac{54}{113} a^{13} - \frac{48}{113} a^{12} + \frac{10}{113} a^{11} + \frac{35}{113} a^{10} - \frac{16}{113} a^{9} + \frac{32}{113} a^{8} + \frac{41}{113} a^{7} - \frac{8}{113} a^{6} + \frac{15}{113} a^{5} + \frac{27}{113} a^{4} + \frac{21}{113} a^{3} - \frac{31}{113} a^{2} - \frac{19}{113} a + \frac{11}{113}$, $\frac{1}{4376768144029355111433375631232684881} a^{17} + \frac{14354412929352108446946757513607269}{4376768144029355111433375631232684881} a^{16} - \frac{1171844064423165312957040813598007336}{4376768144029355111433375631232684881} a^{15} - \frac{1171692340987032552467100657397530305}{4376768144029355111433375631232684881} a^{14} - \frac{1117257548421388839243540379359856337}{4376768144029355111433375631232684881} a^{13} - \frac{995170806496427015563061584492494763}{4376768144029355111433375631232684881} a^{12} - \frac{836331973213364863669401005215021416}{4376768144029355111433375631232684881} a^{11} + \frac{1828246011952728949507676268867428850}{4376768144029355111433375631232684881} a^{10} + \frac{629091216471526855780267633362002136}{4376768144029355111433375631232684881} a^{9} + \frac{1932402899891124138539464056624536823}{4376768144029355111433375631232684881} a^{8} + \frac{1782788447935443730428205285233166606}{4376768144029355111433375631232684881} a^{7} - \frac{1526243984285977698212305880097569985}{4376768144029355111433375631232684881} a^{6} - \frac{98752537202497282570845188074184146}{4376768144029355111433375631232684881} a^{5} - \frac{448020452144997997344658484025957817}{4376768144029355111433375631232684881} a^{4} - \frac{1623623007357363051516748024795587241}{4376768144029355111433375631232684881} a^{3} - \frac{1791805056416217361888671672056817240}{4376768144029355111433375631232684881} a^{2} - \frac{1845817798844822194636217994868563079}{4376768144029355111433375631232684881} a + \frac{55522461589160853084566137563737011}{4376768144029355111433375631232684881}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3254034.77066 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 180 conjugacy class representatives for t18n840 are not computed |
| Character table for t18n840 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.7.2668161671.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 97 | Data not computed | ||||||
| 22679 | Data not computed | ||||||