Normalized defining polynomial
\( x^{18} - 72 x^{14} - 96 x^{13} - 194 x^{12} - 108 x^{11} + 240 x^{10} + 2784 x^{9} + 648 x^{8} + 1680 x^{7} + 3201 x^{6} - 2988 x^{5} - 1128 x^{4} - 3072 x^{3} - 2304 x^{2} + 1536 x - 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14998069355851395963169290584064=-\,2^{28}\cdot 3^{18}\cdot 229^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{5} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{3}{8} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{3}{16} a^{9} - \frac{3}{16} a^{8} - \frac{3}{16} a^{7} - \frac{3}{16} a^{6} - \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{16} - \frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{3}{32} a^{10} + \frac{5}{32} a^{9} + \frac{5}{32} a^{8} - \frac{3}{32} a^{7} - \frac{3}{32} a^{6} - \frac{3}{32} a^{5} + \frac{7}{16} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{54054626088089510619433839488} a^{17} + \frac{306199858308765280753827931}{27027313044044755309716919744} a^{16} - \frac{186006499597614729333257453}{6756828261011188827429229936} a^{15} - \frac{242280124774426258856795681}{13513656522022377654858459872} a^{14} - \frac{547349905520440115157837393}{13513656522022377654858459872} a^{13} + \frac{690790888969609070529283793}{13513656522022377654858459872} a^{12} + \frac{2482145384198926335983024169}{27027313044044755309716919744} a^{11} + \frac{1126229035679971787158871087}{13513656522022377654858459872} a^{10} + \frac{1427935801014498798449257499}{13513656522022377654858459872} a^{9} + \frac{236280717463638400406062759}{13513656522022377654858459872} a^{8} + \frac{881139985959115540523551257}{13513656522022377654858459872} a^{7} + \frac{1372402579460558860190352103}{13513656522022377654858459872} a^{6} + \frac{12643164718805604928468899869}{54054626088089510619433839488} a^{5} + \frac{9045928483559687851760924803}{27027313044044755309716919744} a^{4} - \frac{5687161381009769266787146911}{13513656522022377654858459872} a^{3} + \frac{1652267118144807892303294241}{6756828261011188827429229936} a^{2} - \frac{1088471124278237618921432855}{3378414130505594413714614968} a - \frac{44047242417673203705713851}{1689207065252797206857307484}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4020152035.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 174 conjugacy class representatives for t18n930 are not computed |
| Character table for t18n930 is not computed |
Intermediate fields
| 3.3.229.1, 6.6.3356224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.8.16.54 | $x^{8} + 16 x^{5} + 20 x^{4} + 112$ | $4$ | $2$ | $16$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 3, 3]^{4}$ | |
| $3$ | 3.9.9.1 | $x^{9} + 54 x^{5} + 27 x^{3} + 189$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| 3.9.9.7 | $x^{9} + 18 x^{3} + 54 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| 229 | Data not computed | ||||||