Normalized defining polynomial
\( x^{18} - 3 x^{17} - 15 x^{16} + 32 x^{15} + 117 x^{14} - 147 x^{13} - 504 x^{12} + 675 x^{11} + 1119 x^{10} - 3362 x^{9} - 927 x^{8} + 10140 x^{7} - 1716 x^{6} - 15909 x^{5} + 5283 x^{4} + 11057 x^{3} - 4905 x^{2} - 1995 x + 967 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14721945919978712958250621632=-\,2^{6}\cdot 3^{23}\cdot 367^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{50} a^{15} - \frac{1}{25} a^{13} - \frac{1}{50} a^{12} - \frac{6}{25} a^{11} + \frac{4}{25} a^{10} - \frac{9}{50} a^{9} - \frac{12}{25} a^{8} + \frac{7}{25} a^{7} + \frac{11}{50} a^{6} - \frac{7}{25} a^{5} + \frac{13}{50} a^{4} - \frac{3}{25} a^{3} + \frac{2}{5} a^{2} + \frac{7}{25} a + \frac{21}{50}$, $\frac{1}{50} a^{16} - \frac{1}{25} a^{14} - \frac{1}{50} a^{13} - \frac{1}{25} a^{12} - \frac{6}{25} a^{11} - \frac{9}{50} a^{10} - \frac{7}{25} a^{9} + \frac{7}{25} a^{8} + \frac{21}{50} a^{7} + \frac{3}{25} a^{6} + \frac{13}{50} a^{5} + \frac{12}{25} a^{4} - \frac{2}{5} a^{3} - \frac{3}{25} a^{2} + \frac{11}{50} a - \frac{2}{5}$, $\frac{1}{586952080410816457900} a^{17} + \frac{303058435946500784}{146738020102704114475} a^{16} - \frac{1623384325082042439}{586952080410816457900} a^{15} - \frac{33970660595145744903}{586952080410816457900} a^{14} + \frac{11813296332860675514}{146738020102704114475} a^{13} + \frac{40110201675598888493}{586952080410816457900} a^{12} - \frac{1020391695581334847}{586952080410816457900} a^{11} - \frac{18622312060637849487}{293476040205408228950} a^{10} + \frac{72777431322012236873}{586952080410816457900} a^{9} - \frac{235808408791361467937}{586952080410816457900} a^{8} - \frac{870928323283432163}{293476040205408228950} a^{7} - \frac{1519816170722674471}{15446107379232012050} a^{6} + \frac{11468462716998381458}{29347604020540822895} a^{5} - \frac{53443696459164157637}{586952080410816457900} a^{4} + \frac{65667066256709074733}{293476040205408228950} a^{3} - \frac{45919937148866644673}{117390416082163291580} a^{2} + \frac{32110819080009207632}{146738020102704114475} a + \frac{280715346210809810333}{586952080410816457900}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47471158.301 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n782 are not computed |
| Character table for t18n782 is not computed |
Intermediate fields
| 3.3.1101.1, 9.9.35026116351444.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $3$ | 3.6.11.7 | $x^{6} + 21$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.12.12.28 | $x^{12} + 12 x^{11} - 3 x^{10} + 3 x^{9} + 3 x^{8} + 6 x^{7} + 12 x^{6} + 9 x^{5} + 9 x^{4} + 9 x + 9$ | $6$ | $2$ | $12$ | 12T34 | $[5/4, 5/4]_{4}^{2}$ | |
| 367 | Data not computed | ||||||