Normalized defining polynomial
\( x^{18} - 3 x^{17} - 12 x^{16} + 59 x^{15} - 169 x^{14} + 315 x^{13} + 250 x^{12} - 1177 x^{11} + 998 x^{10} + 277 x^{9} - 1342 x^{8} + 1251 x^{7} - 12 x^{6} - 683 x^{5} - 83 x^{4} + 534 x^{3} - 218 x^{2} + 28 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14190681927143653093964686897152=-\,2^{12}\cdot 3^{6}\cdot 7^{12}\cdot 41^{8}\cdot 43\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7063} a^{16} - \frac{788}{7063} a^{15} - \frac{68}{7063} a^{14} + \frac{906}{7063} a^{13} + \frac{2004}{7063} a^{12} + \frac{339}{1009} a^{11} + \frac{2734}{7063} a^{10} - \frac{82}{7063} a^{9} - \frac{95}{1009} a^{8} + \frac{1326}{7063} a^{7} - \frac{2549}{7063} a^{6} + \frac{2997}{7063} a^{5} + \frac{2980}{7063} a^{4} - \frac{2596}{7063} a^{3} + \frac{3172}{7063} a^{2} - \frac{2131}{7063} a - \frac{1416}{7063}$, $\frac{1}{115077877742250333967} a^{17} - \frac{191841835756055}{16439696820321476281} a^{16} - \frac{2924677341429370950}{16439696820321476281} a^{15} - \frac{30411090590751714819}{115077877742250333967} a^{14} - \frac{7740348050431854860}{16439696820321476281} a^{13} - \frac{52932652024701462320}{115077877742250333967} a^{12} - \frac{41649208122734789951}{115077877742250333967} a^{11} - \frac{35196121184749837273}{115077877742250333967} a^{10} - \frac{17657681356389098254}{115077877742250333967} a^{9} + \frac{35631285954058831494}{115077877742250333967} a^{8} - \frac{17689424637880235390}{115077877742250333967} a^{7} + \frac{44490230668682741352}{115077877742250333967} a^{6} + \frac{54653845692900533739}{115077877742250333967} a^{5} - \frac{4951620966645966338}{16439696820321476281} a^{4} + \frac{9596281415973274664}{115077877742250333967} a^{3} - \frac{28545151337110114881}{115077877742250333967} a^{2} - \frac{541901641321554461}{16439696820321476281} a - \frac{13848025527996995616}{115077877742250333967}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1028189148.66 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | R | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 41 | Data not computed | ||||||
| 43 | Data not computed | ||||||