Normalized defining polynomial
\( x^{18} - 6 x^{17} + 3 x^{16} + 47 x^{15} - 138 x^{14} + 174 x^{13} + 36 x^{12} - 723 x^{11} + 1551 x^{10} - 2113 x^{9} + 1890 x^{8} - 459 x^{7} - 732 x^{6} + 2064 x^{5} - 1920 x^{4} + 1399 x^{3} - 690 x^{2} + 129 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1399141503834185765244506391=-\,3^{24}\cdot 7^{12}\cdot 71^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{3}{8} a^{2} - \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} + \frac{3}{16} a^{10} - \frac{1}{8} a^{9} - \frac{3}{16} a^{7} - \frac{1}{16} a^{6} + \frac{5}{16} a^{5} - \frac{3}{8} a^{4} - \frac{5}{16} a^{3} - \frac{1}{4} a - \frac{3}{16}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{12} + \frac{3}{32} a^{11} + \frac{1}{32} a^{10} - \frac{1}{16} a^{9} - \frac{3}{32} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{32} a^{5} - \frac{11}{32} a^{4} + \frac{11}{32} a^{3} - \frac{1}{8} a^{2} + \frac{9}{32} a - \frac{3}{32}$, $\frac{1}{128} a^{15} + \frac{1}{128} a^{14} + \frac{3}{128} a^{13} + \frac{3}{64} a^{12} - \frac{3}{32} a^{11} + \frac{11}{128} a^{10} + \frac{27}{128} a^{9} + \frac{17}{128} a^{8} + \frac{3}{32} a^{7} + \frac{15}{128} a^{6} + \frac{3}{8} a^{5} + \frac{1}{16} a^{4} - \frac{45}{128} a^{3} - \frac{19}{128} a^{2} + \frac{15}{64} a - \frac{39}{128}$, $\frac{1}{80137984} a^{16} + \frac{151997}{40068992} a^{15} - \frac{218875}{20034496} a^{14} + \frac{2164369}{80137984} a^{13} + \frac{2440121}{40068992} a^{12} + \frac{8534503}{80137984} a^{11} - \frac{4282845}{40068992} a^{10} + \frac{3580049}{20034496} a^{9} - \frac{12680595}{80137984} a^{8} - \frac{11585381}{80137984} a^{7} + \frac{28866503}{80137984} a^{6} - \frac{674963}{2504312} a^{5} + \frac{22754387}{80137984} a^{4} - \frac{1928583}{5008624} a^{3} + \frac{11389347}{80137984} a^{2} - \frac{942529}{80137984} a + \frac{33961545}{80137984}$, $\frac{1}{160275968} a^{17} - \frac{1}{160275968} a^{16} + \frac{294947}{80137984} a^{15} + \frac{1524757}{160275968} a^{14} - \frac{4599401}{160275968} a^{13} - \frac{1194863}{160275968} a^{12} - \frac{2599047}{160275968} a^{11} + \frac{13877441}{80137984} a^{10} + \frac{29998097}{160275968} a^{9} - \frac{5375241}{40068992} a^{8} - \frac{13721737}{80137984} a^{7} + \frac{10406035}{160275968} a^{6} - \frac{55730877}{160275968} a^{5} + \frac{74726399}{160275968} a^{4} - \frac{26833421}{160275968} a^{3} - \frac{14515841}{80137984} a^{2} - \frac{2589315}{40068992} a + \frac{36606445}{160275968}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10625039.2594 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1152 |
| The 48 conjugacy class representatives for t18n263 |
| Character table for t18n263 is not computed |
Intermediate fields
| 3.3.3969.1, 3.3.3969.2, \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| 71 | Data not computed | ||||||