Normalized defining polynomial
\( x^{18} - 9 x^{17} + 36 x^{16} - 84 x^{15} - 324 x^{14} + 3024 x^{13} - 10665 x^{12} + 23508 x^{11} - 34398 x^{10} + 31289 x^{9} - 10359 x^{8} - 16020 x^{7} + 30048 x^{6} - 26505 x^{5} + 14769 x^{4} - 5391 x^{3} + 1242 x^{2} - 162 x + 9 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1216851650518801193821772578418688=-\,2^{12}\cdot 3^{36}\cdot 7^{12}\cdot 11\cdot 13\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5}$, $\frac{1}{543} a^{14} - \frac{7}{543} a^{13} + \frac{3}{181} a^{12} + \frac{37}{543} a^{11} + \frac{56}{543} a^{10} - \frac{81}{181} a^{9} + \frac{187}{543} a^{8} - \frac{226}{543} a^{7} + \frac{47}{181} a^{6} - \frac{37}{181} a^{5} - \frac{46}{181} a^{4} - \frac{46}{181} a^{3} + \frac{60}{181} a^{2} + \frac{84}{181} a - \frac{15}{181}$, $\frac{1}{543} a^{15} - \frac{40}{543} a^{13} - \frac{27}{181} a^{12} - \frac{47}{543} a^{11} - \frac{32}{543} a^{10} - \frac{247}{543} a^{9} - \frac{1}{181} a^{8} - \frac{58}{181} a^{7} - \frac{70}{181} a^{6} - \frac{10}{543} a^{5} - \frac{6}{181} a^{4} - \frac{81}{181} a^{3} - \frac{39}{181} a^{2} + \frac{30}{181} a + \frac{76}{181}$, $\frac{1}{9533451} a^{16} - \frac{8}{9533451} a^{15} - \frac{7942}{9533451} a^{14} + \frac{18578}{3177817} a^{13} - \frac{67730}{3177817} a^{12} + \frac{494234}{9533451} a^{11} - \frac{778801}{9533451} a^{10} + \frac{692807}{9533451} a^{9} + \frac{1425778}{9533451} a^{8} + \frac{943741}{3177817} a^{7} + \frac{21993}{3177817} a^{6} + \frac{4058983}{9533451} a^{5} - \frac{200537}{3177817} a^{4} + \frac{877417}{3177817} a^{3} + \frac{720279}{3177817} a^{2} - \frac{1097608}{3177817} a + \frac{594495}{3177817}$, $\frac{1}{66734157} a^{17} + \frac{2}{66734157} a^{16} + \frac{27092}{66734157} a^{15} - \frac{41243}{66734157} a^{14} + \frac{750102}{22244719} a^{13} - \frac{7717730}{66734157} a^{12} - \frac{1095697}{9533451} a^{11} - \frac{6024226}{66734157} a^{10} + \frac{256408}{22244719} a^{9} - \frac{1788800}{22244719} a^{8} - \frac{27786634}{66734157} a^{7} - \frac{5947324}{22244719} a^{6} + \frac{1855079}{9533451} a^{5} - \frac{3708832}{22244719} a^{4} - \frac{2075614}{22244719} a^{3} + \frac{3682316}{22244719} a^{2} - \frac{4447319}{22244719} a - \frac{7012116}{22244719}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34664259179.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.9.18.24 | $x^{9} + 3 x^{6} + 24 x^{3} + 9 x + 3$ | $9$ | $1$ | $18$ | $C_3^2 : C_6$ | $[3/2, 2, 5/2]_{2}$ |
| 3.9.18.24 | $x^{9} + 3 x^{6} + 24 x^{3} + 9 x + 3$ | $9$ | $1$ | $18$ | $C_3^2 : C_6$ | $[3/2, 2, 5/2]_{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |