Properties

Label 18.8.11773880410...1847.1
Degree $18$
Signature $[8, 5]$
Discriminant $-\,7^{12}\cdot 83^{4}\cdot 167\cdot 181^{4}$
Root discriminant $41.21$
Ramified primes $7, 83, 167, 181$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T839

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8287, 14982, -17799, -38827, 15037, 40346, -7369, -21571, 3031, 6107, -1115, -696, 224, -76, 5, 32, -9, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 9*x^16 + 32*x^15 + 5*x^14 - 76*x^13 + 224*x^12 - 696*x^11 - 1115*x^10 + 6107*x^9 + 3031*x^8 - 21571*x^7 - 7369*x^6 + 40346*x^5 + 15037*x^4 - 38827*x^3 - 17799*x^2 + 14982*x + 8287)
 
gp: K = bnfinit(x^18 - 3*x^17 - 9*x^16 + 32*x^15 + 5*x^14 - 76*x^13 + 224*x^12 - 696*x^11 - 1115*x^10 + 6107*x^9 + 3031*x^8 - 21571*x^7 - 7369*x^6 + 40346*x^5 + 15037*x^4 - 38827*x^3 - 17799*x^2 + 14982*x + 8287, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{17} - 9 x^{16} + 32 x^{15} + 5 x^{14} - 76 x^{13} + 224 x^{12} - 696 x^{11} - 1115 x^{10} + 6107 x^{9} + 3031 x^{8} - 21571 x^{7} - 7369 x^{6} + 40346 x^{5} + 15037 x^{4} - 38827 x^{3} - 17799 x^{2} + 14982 x + 8287 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-117738804108043349358031051847=-\,7^{12}\cdot 83^{4}\cdot 167\cdot 181^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $41.21$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 83, 167, 181$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{15967652887357575751704377} a^{17} - \frac{324873934763952593457940}{15967652887357575751704377} a^{16} + \frac{5601419562756939182020660}{15967652887357575751704377} a^{15} + \frac{6608695754782563566334489}{15967652887357575751704377} a^{14} - \frac{6501650129645161354827013}{15967652887357575751704377} a^{13} + \frac{827000337137368917950284}{15967652887357575751704377} a^{12} + \frac{7325015013880200265296458}{15967652887357575751704377} a^{11} + \frac{4083045136414710597382169}{15967652887357575751704377} a^{10} - \frac{1943183570917887837919143}{15967652887357575751704377} a^{9} + \frac{3977250845529932175742740}{15967652887357575751704377} a^{8} + \frac{5641869042529875816304358}{15967652887357575751704377} a^{7} + \frac{6100744188999413964524906}{15967652887357575751704377} a^{6} + \frac{595979631443305255824111}{15967652887357575751704377} a^{5} + \frac{6793639494412930390577026}{15967652887357575751704377} a^{4} + \frac{2947714965075570922047057}{15967652887357575751704377} a^{3} + \frac{2949791885312285131610797}{15967652887357575751704377} a^{2} + \frac{3724179596392361347724030}{15967652887357575751704377} a - \frac{4752148126714504483293525}{15967652887357575751704377}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 77408206.9266 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T839:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 165888
The 192 conjugacy class representatives for t18n839 are not computed
Character table for t18n839 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.9.26552265046321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ $18$ R ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ $18$ ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ $18$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$83$$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.3.2.1$x^{3} - 83$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
83.3.2.1$x^{3} - 83$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
$167$$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
167.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
167.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
167.2.1.2$x^{2} + 334$$2$$1$$1$$C_2$$[\ ]_{2}$
167.4.0.1$x^{4} - x + 60$$1$$4$$0$$C_4$$[\ ]^{4}$
167.4.0.1$x^{4} - x + 60$$1$$4$$0$$C_4$$[\ ]^{4}$
$181$$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$