Normalized defining polynomial
\( x^{18} - 9 x^{16} - 6 x^{15} - 99 x^{14} + 180 x^{13} + 819 x^{12} - 36 x^{11} - 2304 x^{10} - 8420 x^{9} + 22572 x^{8} - 216 x^{7} + 3612 x^{6} - 104400 x^{5} + 97344 x^{4} + 50496 x^{3} - 44928 x^{2} - 17280 x - 1472 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-102113425218360939341687209377792=-\,2^{14}\cdot 3^{37}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{3}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{3}{16} a^{10} - \frac{1}{8} a^{9} + \frac{3}{16} a^{8} - \frac{3}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{8} a^{5}$, $\frac{1}{352} a^{15} - \frac{5}{176} a^{14} - \frac{17}{352} a^{13} + \frac{1}{44} a^{12} - \frac{19}{352} a^{11} + \frac{7}{176} a^{10} + \frac{15}{352} a^{9} - \frac{63}{176} a^{8} + \frac{35}{88} a^{7} + \frac{1}{11} a^{6} + \frac{3}{44} a^{5} + \frac{13}{44} a^{4} + \frac{7}{88} a^{3} - \frac{7}{22} a^{2} + \frac{5}{11} a - \frac{1}{22}$, $\frac{1}{352} a^{16} - \frac{7}{352} a^{14} + \frac{7}{176} a^{13} - \frac{5}{352} a^{12} - \frac{43}{352} a^{10} - \frac{5}{88} a^{9} - \frac{21}{176} a^{8} + \frac{39}{88} a^{7} + \frac{9}{88} a^{6} - \frac{35}{88} a^{5} + \frac{3}{88} a^{4} + \frac{5}{22} a^{3} + \frac{3}{11} a^{2} - \frac{1}{2} a - \frac{5}{11}$, $\frac{1}{168148102982781997100631173461696} a^{17} - \frac{5678269885808413344768393257}{5254628218211937409394724170678} a^{16} + \frac{120728391182250936045452272413}{168148102982781997100631173461696} a^{15} + \frac{529878274732045813114460979995}{84074051491390998550315586730848} a^{14} - \frac{2313480721064619106624953411089}{168148102982781997100631173461696} a^{13} + \frac{608411460329761239596492629861}{42037025745695499275157793365424} a^{12} - \frac{16460886029021344048516674446047}{168148102982781997100631173461696} a^{11} - \frac{361465058794138000721082526292}{2627314109105968704697362085339} a^{10} - \frac{4566060125458990099525260186667}{84074051491390998550315586730848} a^{9} + \frac{4976837140988485796266385420393}{21018512872847749637578896682712} a^{8} + \frac{3953365551170524476435444900373}{42037025745695499275157793365424} a^{7} - \frac{401018982902109177386140595447}{2627314109105968704697362085339} a^{6} - \frac{14385320677098366824835490981443}{42037025745695499275157793365424} a^{5} - \frac{86030291007682215703284622441}{2627314109105968704697362085339} a^{4} - \frac{1981055974144609393875163799705}{21018512872847749637578896682712} a^{3} + \frac{4677394710492549771995291632765}{10509256436423874818789448341356} a^{2} + \frac{36563526004098665911126659651}{238846737191451700427032916849} a + \frac{1252793889126978494014238061247}{5254628218211937409394724170678}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13971915265.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |