Normalized defining polynomial
\( x^{18} - 3 x^{17} - 8 x^{16} + 124 x^{15} - 619 x^{14} - 1029 x^{13} + 6753 x^{12} + 11929 x^{11} - 21709 x^{10} - 71825 x^{9} - 37431 x^{8} + 82141 x^{7} + 161309 x^{6} + 178339 x^{5} + 189414 x^{4} + 167932 x^{3} + 94605 x^{2} + 32247 x + 4806 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(981630043037493479115365283435793=97^{3}\cdot 32009^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 32009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{156} a^{16} + \frac{2}{13} a^{15} + \frac{19}{156} a^{14} + \frac{7}{156} a^{13} + \frac{17}{156} a^{12} - \frac{1}{52} a^{11} + \frac{5}{52} a^{10} + \frac{1}{156} a^{9} + \frac{47}{156} a^{8} - \frac{41}{156} a^{7} + \frac{19}{52} a^{6} + \frac{19}{156} a^{5} - \frac{1}{12} a^{4} + \frac{49}{156} a^{3} + \frac{11}{26} a^{2} - \frac{23}{156} a - \frac{7}{26}$, $\frac{1}{148472613626114567382289736548078278460908} a^{17} - \frac{21009858979094537987637250819667500426}{12372717802176213948524144712339856538409} a^{16} + \frac{289278101616090757070379343875966335491}{148472613626114567382289736548078278460908} a^{15} - \frac{9066990905481655728689199372163404279677}{148472613626114567382289736548078278460908} a^{14} - \frac{36491974773349120354248607006776598131529}{148472613626114567382289736548078278460908} a^{13} + \frac{5857497025594259133775768464051094798847}{49490871208704855794096578849359426153636} a^{12} - \frac{2797387696556220826970260930557057349139}{49490871208704855794096578849359426153636} a^{11} - \frac{807159408465741736113452933807294131037}{11420970278931889798637672042159867573916} a^{10} + \frac{59843238756489623566257957716187582265571}{148472613626114567382289736548078278460908} a^{9} + \frac{72830689921589019817299388549952815826023}{148472613626114567382289736548078278460908} a^{8} - \frac{4004058506060210295364291616756607401359}{16496957069568285264698859616453142051212} a^{7} + \frac{51291093011137091989350684008405696431729}{148472613626114567382289736548078278460908} a^{6} + \frac{23093123387159417741837426413224968891951}{148472613626114567382289736548078278460908} a^{5} - \frac{59929610393372158972134918800334704607107}{148472613626114567382289736548078278460908} a^{4} + \frac{530814197846531145100228736597879706165}{4124239267392071316174714904113285512803} a^{3} + \frac{18052664234432334575330283100725843679933}{148472613626114567382289736548078278460908} a^{2} + \frac{5731838236452558849556347850110957874909}{24745435604352427897048289424679713076818} a - \frac{313446081601427281344122129268793184043}{4124239267392071316174714904113285512803}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30596282920.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 48 conjugacy class representatives for t18n521 |
| Character table for t18n521 is not computed |
Intermediate fields
| 3.3.32009.3, 9.9.32795655776729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 97.6.3.2 | $x^{6} - 9409 x^{2} + 4563365$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 32009 | Data not computed | ||||||