Normalized defining polynomial
\( x^{18} + 13 x^{16} - 42 x^{15} - 347 x^{14} - 582 x^{13} - 2124 x^{12} + 1276 x^{11} + 22904 x^{10} + 59282 x^{9} + 197557 x^{8} + 464924 x^{7} + 775763 x^{6} + 1424964 x^{5} + 1620523 x^{4} + 165110 x^{3} - 1335696 x^{2} - 1665358 x - 1012069 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(928747553864454763844078927872=2^{18}\cdot 37^{6}\cdot 97^{5}\cdot 401^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1669764646622545133574214970969603374772111525771994771289} a^{17} - \frac{544404837494269898973595321568099056146679484886599897429}{1669764646622545133574214970969603374772111525771994771289} a^{16} - \frac{112408882438139372898881954905999736886983014241473233035}{1669764646622545133574214970969603374772111525771994771289} a^{15} + \frac{691539607658367916982522723801515322898882304047168757168}{1669764646622545133574214970969603374772111525771994771289} a^{14} + \frac{383430790736625832618898329060466776679935140368310136442}{1669764646622545133574214970969603374772111525771994771289} a^{13} + \frac{615917240829231799906703540316085584799278317708115711244}{1669764646622545133574214970969603374772111525771994771289} a^{12} - \frac{202823418023338862065796760508968392682847596040068544737}{1669764646622545133574214970969603374772111525771994771289} a^{11} - \frac{777932908423914507409952382582633307795216409454878036765}{1669764646622545133574214970969603374772111525771994771289} a^{10} - \frac{797787930779321505392081142162045439074164354190832693892}{1669764646622545133574214970969603374772111525771994771289} a^{9} - \frac{702774075814708906098218040945062843055067613128144483410}{1669764646622545133574214970969603374772111525771994771289} a^{8} - \frac{194941666875201320621228579991205469158593295722193996762}{1669764646622545133574214970969603374772111525771994771289} a^{7} + \frac{710299745701991198511468851892170821968143756422025378083}{1669764646622545133574214970969603374772111525771994771289} a^{6} + \frac{490625426213229384948788668757069808614982266741519708093}{1669764646622545133574214970969603374772111525771994771289} a^{5} + \frac{215244422666508975739088221003977168897084980877386341750}{1669764646622545133574214970969603374772111525771994771289} a^{4} - \frac{697448891727824849502013944356472117288015663629339776890}{1669764646622545133574214970969603374772111525771994771289} a^{3} - \frac{459684938981406742516679259198537290529629723330161278825}{1669764646622545133574214970969603374772111525771994771289} a^{2} - \frac{165002572077607232138347066810637001792755635715910524528}{1669764646622545133574214970969603374772111525771994771289} a + \frac{78813680004742304933361674789195963354296844203156950067}{1669764646622545133574214970969603374772111525771994771289}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 106345902.285 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 130 conjugacy class representatives for t18n836 are not computed |
| Character table for t18n836 is not computed |
Intermediate fields
| 3.3.148.1, 9.5.1299958592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | R | $18$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| $97$ | 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.6.3.1 | $x^{6} - 194 x^{4} + 9409 x^{2} - 22816825$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 401 | Data not computed | ||||||