Normalized defining polynomial
\( x^{18} - x^{17} - 220 x^{16} + 192 x^{15} + 21412 x^{14} - 16412 x^{13} - 1210662 x^{12} + 815812 x^{11} + 43827399 x^{10} - 25765391 x^{9} - 1053188855 x^{8} + 528345520 x^{7} + 16789448405 x^{6} - 6851856807 x^{5} - 171026989792 x^{4} + 51244516941 x^{3} + 1008259194697 x^{2} - 168842921041 x - 2611950958249 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9178764557539239451556240651976913=97^{9}\cdot 367^{2}\cdot 299401^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 367, 299401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{17} - \frac{96759375334464282369056076383703258653748268276457205642456359672741097}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{16} - \frac{129159592076405983280729534183355677244054715088917184473922740513456038}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{15} - \frac{63116604027208660426114171187861585920554034398033400553515738975872079}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{14} - \frac{15366585127545013414964937176848204494525554758166912170224848272260318}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{13} + \frac{44879878935331462922043223422182182895216215237299421642625648629761860}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{12} + \frac{6992133598906330347849212520203290021532976598005853939257716186154565}{15886943511606380293013443347047954662474937839332190490179615407248257} a^{11} - \frac{106621468359331970968425885641608746975414537716689986853540280470237491}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{10} - \frac{45438711206216339687254012341760085505496744176588851775423042057017883}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{9} + \frac{59252538001709382893731721661216624914303083867040521355580586972378280}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{8} + \frac{103581510035415255103770694159861283454426999283691915624331507695147727}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{7} - \frac{21158960428574548853030164825949713663656881022416043923812319443339217}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{6} + \frac{85678661413370689057002895509622493855708224182696504547065196147070819}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{5} + \frac{6968036370090482789217758562811683672744548328544444465782735514711197}{15886943511606380293013443347047954662474937839332190490179615407248257} a^{4} + \frac{87074778020351916851874161154147095193771551357577451431349748061587777}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{3} + \frac{111548924122958243150279888695874876576254056196053970601107454443225971}{270078039697308464981228536899815229262073943268647238333053461923220369} a^{2} - \frac{364183530734718334809034335744961883627169586843520598894027760570032}{270078039697308464981228536899815229262073943268647238333053461923220369} a - \frac{129528925423727225123140543047349989599241117483389138569228554704667150}{270078039697308464981228536899815229262073943268647238333053461923220369}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9055457367.61 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 725760 |
| The 60 conjugacy class representatives for t18n913 are not computed |
| Character table for t18n913 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 9.3.109880167.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | $18$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 97.6.3.1 | $x^{6} - 194 x^{4} + 9409 x^{2} - 22816825$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 367 | Data not computed | ||||||
| 299401 | Data not computed | ||||||