Normalized defining polynomial
\( x^{18} - 27 x^{16} - 6 x^{15} + 204 x^{14} - 72 x^{13} - 834 x^{12} + 1212 x^{11} + 2619 x^{10} - 4672 x^{9} - 3573 x^{8} + 8226 x^{7} - 798 x^{6} - 5520 x^{5} + 14976 x^{4} - 11364 x^{3} - 2208 x^{2} + 4392 x - 956 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(913386706821601472305592008704=2^{34}\cdot 3^{25}\cdot 13^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{7}{18} a^{5} - \frac{7}{18} a^{4} - \frac{1}{9} a^{3} - \frac{1}{9} a^{2} + \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{36} a^{15} - \frac{1}{36} a^{14} - \frac{1}{18} a^{13} - \frac{1}{18} a^{12} + \frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{12} a^{7} + \frac{7}{36} a^{6} - \frac{4}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{18} a^{3} + \frac{1}{18} a^{2} + \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{148212} a^{16} + \frac{75}{16468} a^{15} - \frac{35}{37053} a^{14} + \frac{5813}{74106} a^{13} - \frac{2357}{37053} a^{12} + \frac{2621}{74106} a^{11} + \frac{1147}{8234} a^{10} + \frac{3281}{74106} a^{9} + \frac{2759}{49404} a^{8} - \frac{13709}{148212} a^{7} - \frac{11303}{24702} a^{6} - \frac{15482}{37053} a^{5} - \frac{16394}{37053} a^{4} - \frac{29425}{74106} a^{3} - \frac{1313}{37053} a^{2} + \frac{5647}{12351} a - \frac{12008}{37053}$, $\frac{1}{1109522130946888768179698520} a^{17} - \frac{875760094041984187853}{369840710315629589393232840} a^{16} - \frac{1265996524746914893111543}{554761065473444384089849260} a^{15} - \frac{1837678357672822637398573}{277380532736722192044924630} a^{14} + \frac{361416190657344796304596}{15410029596484566224718035} a^{13} - \frac{2260507306671640328707024}{27738053273672219204492463} a^{12} - \frac{2921454157015970554257629}{24120046324932364525645620} a^{11} + \frac{8051327740076937282414571}{61640118385938264898872140} a^{10} - \frac{92918462529428749527705743}{1109522130946888768179698520} a^{9} - \frac{35880263963155428662593459}{221904426189377753635939704} a^{8} - \frac{119929240061881509798202}{757870308023831125805805} a^{7} - \frac{193104108206439771523852891}{554761065473444384089849260} a^{6} - \frac{1213428740202375507630191}{55476106547344438408984926} a^{5} - \frac{1842751673728250464950251}{6164011838593826489887214} a^{4} - \frac{68834427646359712200387998}{138690266368361096022462315} a^{3} - \frac{117102863738301088072402817}{277380532736722192044924630} a^{2} + \frac{7273076950543078413333189}{30820059192969132449436070} a + \frac{101670105763836698189949499}{277380532736722192044924630}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2310293755.43 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times S_3\wr C_2$ (as 18T150):
| A solvable group of order 432 |
| The 27 conjugacy class representatives for $S_3\times S_3\wr C_2$ |
| Character table for $S_3\times S_3\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 3.3.2808.1, 6.6.378473472.1, 6.2.7278336.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.6.9 | $x^{4} + 2 x^{3} + 6$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.8.18.54 | $x^{8} + 6 x^{6} + 4 x^{3} + 6$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| 3 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |