Normalized defining polynomial
\( x^{18} + 8 x^{16} - 70 x^{14} - 799 x^{12} - 1938 x^{10} + 138 x^{8} + 2961 x^{6} + 828 x^{4} - 270 x^{2} - 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9132899537976862904123243102208=2^{24}\cdot 3^{9}\cdot 37^{6}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5}$, $\frac{1}{183} a^{12} + \frac{26}{183} a^{10} - \frac{79}{183} a^{8} + \frac{20}{183} a^{6} - \frac{17}{61} a^{4} + \frac{19}{61} a^{2} + \frac{3}{61}$, $\frac{1}{366} a^{13} - \frac{1}{366} a^{12} - \frac{35}{366} a^{11} + \frac{35}{366} a^{10} - \frac{3}{61} a^{9} + \frac{3}{61} a^{8} + \frac{27}{122} a^{7} - \frac{27}{122} a^{6} + \frac{5}{183} a^{5} - \frac{5}{183} a^{4} + \frac{19}{122} a^{3} - \frac{19}{122} a^{2} + \frac{3}{122} a - \frac{3}{122}$, $\frac{1}{4392} a^{14} + \frac{1}{2196} a^{12} + \frac{29}{4392} a^{10} - \frac{463}{4392} a^{8} - \frac{181}{488} a^{6} + \frac{3}{8} a^{4} - \frac{53}{122} a^{2} + \frac{37}{488}$, $\frac{1}{8784} a^{15} - \frac{1}{8784} a^{14} + \frac{1}{4392} a^{13} - \frac{1}{4392} a^{12} - \frac{1435}{8784} a^{11} + \frac{1435}{8784} a^{10} - \frac{3391}{8784} a^{9} + \frac{3391}{8784} a^{8} - \frac{55}{2928} a^{7} + \frac{55}{2928} a^{6} - \frac{7}{48} a^{5} + \frac{7}{48} a^{4} + \frac{69}{244} a^{3} - \frac{69}{244} a^{2} + \frac{37}{976} a - \frac{37}{976}$, $\frac{1}{46625472} a^{16} - \frac{539}{46625472} a^{14} - \frac{14983}{15541824} a^{12} - \frac{4940}{80947} a^{10} - \frac{9650185}{23312736} a^{8} - \frac{16535}{80947} a^{6} - \frac{3177253}{15541824} a^{4} - \frac{1276895}{5180608} a^{2} + \frac{98591}{5180608}$, $\frac{1}{93250944} a^{17} - \frac{1}{93250944} a^{16} - \frac{539}{93250944} a^{15} + \frac{539}{93250944} a^{14} - \frac{14983}{31083648} a^{13} + \frac{14983}{31083648} a^{12} + \frac{66127}{485682} a^{11} - \frac{66127}{485682} a^{10} - \frac{17421097}{46625472} a^{9} + \frac{17421097}{46625472} a^{8} + \frac{112289}{485682} a^{7} - \frac{112289}{485682} a^{6} - \frac{8357861}{31083648} a^{5} + \frac{8357861}{31083648} a^{4} - \frac{1276895}{10361216} a^{3} + \frac{1276895}{10361216} a^{2} - \frac{5082017}{10361216} a + \frac{5082017}{10361216}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 514083958.336 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 60 conjugacy class representatives for t18n461 are not computed |
| Character table for t18n461 is not computed |
Intermediate fields
| 3.3.148.1, 3.3.564.1, 9.9.9087459412032.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.20.41 | $x^{12} + 4 x^{10} + 5 x^{8} + 7 x^{4} - 4 x^{2} - 1$ | $6$ | $2$ | $20$ | 12T50 | $[2, 2, 8/3, 8/3]_{3}^{2}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.12.9.2 | $x^{12} - 9 x^{4} + 27$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $[\ ]_{4}^{6}$ | |
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $47$ | 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 47.12.6.1 | $x^{12} + 1038230 x^{6} - 229345007 x^{2} + 269480383225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |