Properties

Label 18.6.91328995379...2208.1
Degree $18$
Signature $[6, 6]$
Discriminant $2^{24}\cdot 3^{9}\cdot 37^{6}\cdot 47^{6}$
Root discriminant $52.48$
Ramified primes $2, 3, 37, 47$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times S_3\times S_4$ (as 18T111)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-27, 0, 0, 0, 480, 0, 475, 0, -384, 0, -464, 0, -25, 0, 64, 0, 16, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 16*x^16 + 64*x^14 - 25*x^12 - 464*x^10 - 384*x^8 + 475*x^6 + 480*x^4 - 27)
 
gp: K = bnfinit(x^18 + 16*x^16 + 64*x^14 - 25*x^12 - 464*x^10 - 384*x^8 + 475*x^6 + 480*x^4 - 27, 1)
 

Normalized defining polynomial

\( x^{18} + 16 x^{16} + 64 x^{14} - 25 x^{12} - 464 x^{10} - 384 x^{8} + 475 x^{6} + 480 x^{4} - 27 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9132899537976862904123243102208=2^{24}\cdot 3^{9}\cdot 37^{6}\cdot 47^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $52.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 37, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{12} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a$, $\frac{1}{12} a^{14} + \frac{1}{12} a^{12} - \frac{1}{6} a^{10} + \frac{1}{6} a^{8} - \frac{1}{6} a^{6} - \frac{1}{2} a^{4} + \frac{1}{12} a^{2} - \frac{1}{4}$, $\frac{1}{24} a^{15} - \frac{1}{12} a^{13} - \frac{1}{8} a^{12} + \frac{1}{6} a^{11} + \frac{1}{12} a^{9} + \frac{1}{6} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{24} a^{3} + \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{58404744} a^{16} - \frac{232198}{7300593} a^{14} - \frac{1}{8} a^{13} - \frac{3222679}{29202372} a^{12} + \frac{2403649}{29202372} a^{10} - \frac{1226551}{7300593} a^{8} - \frac{1}{4} a^{7} - \frac{310606}{2433531} a^{6} + \frac{15150265}{58404744} a^{4} + \frac{470804}{2433531} a^{2} - \frac{1}{8} a + \frac{1492079}{3244708}$, $\frac{1}{58404744} a^{17} + \frac{575947}{58404744} a^{15} - \frac{1}{24} a^{14} + \frac{1644383}{29202372} a^{13} - \frac{1}{24} a^{12} + \frac{7270711}{29202372} a^{11} - \frac{1}{6} a^{10} - \frac{2472673}{29202372} a^{9} - \frac{1}{12} a^{8} + \frac{189965}{4867062} a^{7} + \frac{1}{12} a^{6} - \frac{14052107}{58404744} a^{5} - \frac{1}{2} a^{4} + \frac{4577609}{19468248} a^{3} - \frac{1}{24} a^{2} + \frac{1492079}{3244708} a + \frac{1}{8}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 805406953.169 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times S_3\times S_4$ (as 18T111):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 288
The 30 conjugacy class representatives for $C_2\times S_3\times S_4$
Character table for $C_2\times S_3\times S_4$ is not computed

Intermediate fields

3.3.564.1, 3.3.148.1, 6.2.9462528.2, 9.9.9087459412032.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ R ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.8.4$x^{6} + 2 x^{3} + 2 x^{2} + 2$$6$$1$$8$$S_4\times C_2$$[4/3, 4/3, 2]_{3}^{2}$
2.12.16.19$x^{12} + x^{10} - 2 x^{8} - 3 x^{6} + 2 x^{4} - 3 x^{2} + 1$$6$$2$$16$$C_2\times S_4$$[4/3, 4/3, 2]_{3}^{2}$
$3$3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$37$37.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
37.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
37.12.6.1$x^{12} + 2026120 x^{6} - 69343957 x^{2} + 1026290563600$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$47$47.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
47.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
47.6.3.1$x^{6} - 94 x^{4} + 2209 x^{2} - 415292$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
47.6.3.1$x^{6} - 94 x^{4} + 2209 x^{2} - 415292$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$