Normalized defining polynomial
\( x^{18} - 8 x^{17} + 22 x^{16} + 2 x^{15} - 200 x^{14} + 576 x^{13} - 416 x^{12} - 1256 x^{11} + 2008 x^{10} + 4038 x^{9} - 14024 x^{8} + 13764 x^{7} + 34268 x^{6} - 35896 x^{5} + 36788 x^{4} - 103512 x^{3} - 96814 x^{2} - 64800 x - 86822 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8934376149939999921431117824=2^{26}\cdot 37^{6}\cdot 139^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{37} a^{16} + \frac{1}{37} a^{15} - \frac{17}{37} a^{14} - \frac{14}{37} a^{13} + \frac{9}{37} a^{12} - \frac{3}{37} a^{11} + \frac{13}{37} a^{10} + \frac{4}{37} a^{9} + \frac{14}{37} a^{8} + \frac{13}{37} a^{7} - \frac{1}{37} a^{6} - \frac{4}{37} a^{5} + \frac{18}{37} a^{4} + \frac{15}{37} a^{3} - \frac{16}{37} a^{2} + \frac{1}{37} a + \frac{15}{37}$, $\frac{1}{3769871746959488792293693277399460625096693013} a^{17} + \frac{25139883829290174417635834599483580987004493}{3769871746959488792293693277399460625096693013} a^{16} - \frac{214573239797156158666769821107880128916940156}{3769871746959488792293693277399460625096693013} a^{15} + \frac{778947022847443770470177646340337383454192037}{3769871746959488792293693277399460625096693013} a^{14} + \frac{572170592247162954325089874012583281021722398}{3769871746959488792293693277399460625096693013} a^{13} - \frac{1229403546523934301838033618050117844450909794}{3769871746959488792293693277399460625096693013} a^{12} - \frac{1244370119740627063815240902062889702457835234}{3769871746959488792293693277399460625096693013} a^{11} - \frac{1087994642356597427913329459017908308228051975}{3769871746959488792293693277399460625096693013} a^{10} - \frac{353639146359016541504723912245563595395391417}{3769871746959488792293693277399460625096693013} a^{9} + \frac{578507663703660644415982623282930319694530105}{3769871746959488792293693277399460625096693013} a^{8} + \frac{490102029086663117938329403255155225021031625}{3769871746959488792293693277399460625096693013} a^{7} + \frac{1316948223453205506193262465214018063966467127}{3769871746959488792293693277399460625096693013} a^{6} + \frac{54670259986183623094149984058818172731062692}{3769871746959488792293693277399460625096693013} a^{5} + \frac{1302230901209724915324822185170359493793666058}{3769871746959488792293693277399460625096693013} a^{4} + \frac{1776288211947609929326381978913530471188352418}{3769871746959488792293693277399460625096693013} a^{3} - \frac{6547896921427848436628682085417745731188682}{16179707068495660052762632091843178648483661} a^{2} + \frac{72372218390531341942577323918457831478069090}{3769871746959488792293693277399460625096693013} a + \frac{144718611218866712770724590949402221004837309}{3769871746959488792293693277399460625096693013}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6673378.34878 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10368 |
| The 98 conjugacy class representatives for t18n556 are not computed |
| Character table for t18n556 is not computed |
Intermediate fields
| 3.3.148.1, 6.6.48714496.1, 9.3.1802436352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | $18$ | $18$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| $139$ | $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.6.3.2 | $x^{6} - 19321 x^{2} + 13428095$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |