Normalized defining polynomial
\( x^{18} + 24 x^{16} - 12 x^{15} + 267 x^{14} + 372 x^{13} - 2439 x^{12} + 5268 x^{11} - 3315 x^{10} - 26096 x^{9} + 3498 x^{8} - 38430 x^{7} - 323604 x^{6} + 482364 x^{5} + 326187 x^{4} + 18882 x^{3} + 2309247 x^{2} - 760338 x - 1517613 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(860550148596054437082169344000000=2^{24}\cdot 3^{32}\cdot 5^{6}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} - \frac{3}{11} a^{10} - \frac{2}{11} a^{9} - \frac{2}{11} a^{8} + \frac{3}{11} a^{7} - \frac{5}{11} a^{6} - \frac{5}{11} a^{5} - \frac{5}{11} a^{4} - \frac{1}{11} a^{3} + \frac{2}{11} a^{2} + \frac{2}{11} a - \frac{3}{11}$, $\frac{1}{11} a^{13} - \frac{3}{11} a^{11} - \frac{2}{11} a^{10} - \frac{2}{11} a^{9} + \frac{3}{11} a^{8} - \frac{5}{11} a^{7} - \frac{5}{11} a^{6} - \frac{5}{11} a^{5} - \frac{1}{11} a^{4} + \frac{2}{11} a^{3} + \frac{2}{11} a^{2} - \frac{3}{11} a$, $\frac{1}{11} a^{14} - \frac{2}{11} a^{11} - \frac{3}{11} a^{9} + \frac{4}{11} a^{7} + \frac{2}{11} a^{6} - \frac{5}{11} a^{5} - \frac{2}{11} a^{4} - \frac{1}{11} a^{3} + \frac{3}{11} a^{2} - \frac{5}{11} a + \frac{2}{11}$, $\frac{1}{11} a^{15} + \frac{2}{11} a^{10} - \frac{4}{11} a^{9} - \frac{3}{11} a^{7} - \frac{4}{11} a^{6} - \frac{1}{11} a^{5} + \frac{1}{11} a^{3} - \frac{1}{11} a^{2} - \frac{5}{11} a + \frac{5}{11}$, $\frac{1}{43571} a^{16} + \frac{656}{43571} a^{15} - \frac{2}{2563} a^{14} - \frac{895}{43571} a^{13} + \frac{837}{43571} a^{12} - \frac{21599}{43571} a^{11} - \frac{21402}{43571} a^{10} + \frac{4524}{43571} a^{9} - \frac{15472}{43571} a^{8} + \frac{10356}{43571} a^{7} + \frac{12854}{43571} a^{6} - \frac{8930}{43571} a^{5} + \frac{10012}{43571} a^{4} + \frac{361}{43571} a^{3} - \frac{3585}{43571} a^{2} - \frac{529}{3961} a - \frac{4326}{43571}$, $\frac{1}{9300552266891164341496820422498064380643107683220373} a^{17} + \frac{102244421811549642961366819145336920625893726724}{9300552266891164341496820422498064380643107683220373} a^{16} - \frac{318005194119781252563604043398728943442465069688041}{9300552266891164341496820422498064380643107683220373} a^{15} + \frac{331710132699812816064066366736931945321334934897605}{9300552266891164341496820422498064380643107683220373} a^{14} - \frac{80876707545256181214681958569882770525792992111352}{9300552266891164341496820422498064380643107683220373} a^{13} + \frac{196681507617299605583755578709317518936510778575838}{9300552266891164341496820422498064380643107683220373} a^{12} + \frac{415831454850815164964519850969788361217900604206704}{9300552266891164341496820422498064380643107683220373} a^{11} + \frac{2714178115843203894040245054581805109358326426367517}{9300552266891164341496820422498064380643107683220373} a^{10} + \frac{1899532327469386249081947510160660710244757635925}{17851347921096284724562035359881121651906156781613} a^{9} + \frac{3514322178866396603207009137540064099941054756201200}{9300552266891164341496820422498064380643107683220373} a^{8} + \frac{2404318374152506939849713008524221302798243845781247}{9300552266891164341496820422498064380643107683220373} a^{7} + \frac{3345812643535403926757559926773740088844738069090189}{9300552266891164341496820422498064380643107683220373} a^{6} - \frac{1391076118889865919931117552736966178770916465223605}{9300552266891164341496820422498064380643107683220373} a^{5} + \frac{396453333441302523020384658519152150412375035052482}{845504751535560394681529129318005852785737062110943} a^{4} - \frac{1146002075941109877325493967436276841017916386664865}{9300552266891164341496820422498064380643107683220373} a^{3} + \frac{990322400268894436955280335739207492758891877514659}{9300552266891164341496820422498064380643107683220373} a^{2} - \frac{1854952941534576786614127202839548002361091135358481}{9300552266891164341496820422498064380643107683220373} a - \frac{2121049703872594592897307796242739554453904835207503}{9300552266891164341496820422498064380643107683220373}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6619213471.22 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1152 |
| The 24 conjugacy class representatives for t18n268 |
| Character table for t18n268 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.1620.1, 9.9.344373768000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.16.12 | $x^{9} + 6 x^{8} + 3$ | $9$ | $1$ | $16$ | $S_3\times C_3$ | $[2, 2]^{2}$ |
| 3.9.16.12 | $x^{9} + 6 x^{8} + 3$ | $9$ | $1$ | $16$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |