Normalized defining polynomial
\( x^{18} - 3 x^{17} + 6 x^{16} + 2 x^{15} - 405 x^{14} + 1071 x^{13} - 2765 x^{12} + 3558 x^{11} + 25806 x^{10} - 61148 x^{9} + 248619 x^{8} - 292068 x^{7} - 38649 x^{6} + 875178 x^{5} - 4760613 x^{4} + 6986556 x^{3} - 9791766 x^{2} + 10095192 x + 2539377 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8210596569826381664214775617297=3^{24}\cdot 73^{6}\cdot 577^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{4}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{13} - \frac{1}{3} a^{11} + \frac{1}{9} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{4}{9} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{111226658194964749831438456108617173921023306725271255929} a^{17} + \frac{3511524005841933138766237889785992147339448663147432019}{111226658194964749831438456108617173921023306725271255929} a^{16} - \frac{3990912657905763139608028894475093928814775840563877338}{111226658194964749831438456108617173921023306725271255929} a^{15} + \frac{16078940916520522246834766471725349994094197041860840871}{111226658194964749831438456108617173921023306725271255929} a^{14} + \frac{10614269988175925537105198522274167626202927283337811704}{111226658194964749831438456108617173921023306725271255929} a^{13} + \frac{7262294441642304706569513289184738682358815568180194118}{111226658194964749831438456108617173921023306725271255929} a^{12} - \frac{15559885612881546240391807951374148807548792911856132773}{111226658194964749831438456108617173921023306725271255929} a^{11} - \frac{40901445228394235991848393246293660499907743640628584622}{111226658194964749831438456108617173921023306725271255929} a^{10} + \frac{27238483675345859595736950733016509756701027150528740222}{111226658194964749831438456108617173921023306725271255929} a^{9} - \frac{52174283651987450580870432621907444731528529691186506985}{111226658194964749831438456108617173921023306725271255929} a^{8} + \frac{20867671517903919773826256794888417847575304366940173046}{111226658194964749831438456108617173921023306725271255929} a^{7} + \frac{12268922866652930439038896192537174830653928841919228456}{111226658194964749831438456108617173921023306725271255929} a^{6} + \frac{8584728358230905830740377192427704390082102189236847203}{37075552731654916610479485369539057973674435575090418643} a^{5} + \frac{11663613850790212701494316817114727807443988902107238609}{37075552731654916610479485369539057973674435575090418643} a^{4} - \frac{15052215839391162823551342174692961397120175140358761472}{37075552731654916610479485369539057973674435575090418643} a^{3} + \frac{3803170537133805137700187866299081529294933233939233614}{12358517577218305536826495123179685991224811858363472881} a^{2} + \frac{1675634763243363282706054774684655262444226452072578474}{12358517577218305536826495123179685991224811858363472881} a - \frac{2029857126398359358836576331167243182854000763851119553}{12358517577218305536826495123179685991224811858363472881}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 226739290.669 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n767 are not computed |
| Character table for t18n767 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 73 | Data not computed | ||||||
| 577 | Data not computed | ||||||