Normalized defining polynomial
\( x^{18} - 4 x^{17} + 8 x^{16} - 18 x^{15} - 15 x^{14} + 165 x^{13} - 382 x^{12} + 684 x^{11} - 772 x^{10} - 256 x^{9} + 2164 x^{8} - 3244 x^{7} + 3710 x^{6} + 716 x^{5} - 2241 x^{4} + 4565 x^{3} - 3901 x^{2} - 1600 x + 1709 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8191939224918986549431097=7^{12}\cdot 41^{3}\cdot 97^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1195629632966252023278852535989731081} a^{17} + \frac{111723988182755543844088341612167010}{1195629632966252023278852535989731081} a^{16} - \frac{342058149870565406186091948269607313}{1195629632966252023278852535989731081} a^{15} + \frac{117607997708513029069438390725851934}{1195629632966252023278852535989731081} a^{14} + \frac{139549102453847457997834882210432701}{1195629632966252023278852535989731081} a^{13} - \frac{366630742887414795433851905436344055}{1195629632966252023278852535989731081} a^{12} - \frac{532942051190017613796128975227469758}{1195629632966252023278852535989731081} a^{11} - \frac{2557622917885220975597539548412108}{6605688579924044327507472574528901} a^{10} + \frac{126242086545979940145759760243857601}{1195629632966252023278852535989731081} a^{9} - \frac{127103205925166404622955133833965809}{1195629632966252023278852535989731081} a^{8} - \frac{174532270786543430663965837644659418}{1195629632966252023278852535989731081} a^{7} - \frac{230340877934148068895977718948139149}{1195629632966252023278852535989731081} a^{6} + \frac{247767596939009004407345030577899522}{1195629632966252023278852535989731081} a^{5} + \frac{566161176470720930996790044007312683}{1195629632966252023278852535989731081} a^{4} + \frac{557438132269948467882477489469302922}{1195629632966252023278852535989731081} a^{3} + \frac{124754189855672045392330214901352110}{1195629632966252023278852535989731081} a^{2} + \frac{396326870935798194079213332701318694}{1195629632966252023278852535989731081} a + \frac{110918646874958984924530702052910704}{1195629632966252023278852535989731081}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 268458.813591 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 180 conjugacy class representatives for t18n840 are not computed |
| Character table for t18n840 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.5.467890073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 41 | Data not computed | ||||||
| 97 | Data not computed | ||||||