Normalized defining polynomial
\( x^{18} - 138 x^{16} - 68853 x^{14} - 6124047 x^{12} - 149831913 x^{10} + 3421153032 x^{8} + 176355676530 x^{6} + 503949705963 x^{4} - 40426599583227 x^{2} - 262254607552729 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8153107601695937311094624312805556224000000=2^{30}\cdot 3^{32}\cdot 5^{6}\cdot 11^{6}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $242.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{253} a^{8} + \frac{5}{11} a^{6} - \frac{37}{253} a^{4} + \frac{71}{253} a^{2}$, $\frac{1}{253} a^{9} + \frac{5}{11} a^{7} - \frac{37}{253} a^{5} + \frac{71}{253} a^{3}$, $\frac{1}{64009} a^{10} + \frac{5}{2783} a^{8} + \frac{24251}{64009} a^{6} + \frac{11456}{64009} a^{4} + \frac{123}{253} a^{2}$, $\frac{1}{64009} a^{11} + \frac{5}{2783} a^{9} + \frac{24251}{64009} a^{7} + \frac{11456}{64009} a^{5} + \frac{123}{253} a^{3}$, $\frac{1}{16194277} a^{12} + \frac{5}{704099} a^{10} + \frac{24251}{16194277} a^{8} + \frac{7372491}{16194277} a^{6} - \frac{14045}{64009} a^{4} + \frac{6}{253} a^{2}$, $\frac{1}{16194277} a^{13} + \frac{5}{704099} a^{11} + \frac{24251}{16194277} a^{9} + \frac{7372491}{16194277} a^{7} - \frac{14045}{64009} a^{5} + \frac{6}{253} a^{3}$, $\frac{1}{4097152081} a^{14} + \frac{5}{178137047} a^{12} + \frac{24251}{4097152081} a^{10} + \frac{7372491}{4097152081} a^{8} - \frac{3278504}{16194277} a^{6} - \frac{13150}{64009} a^{4} - \frac{113}{253} a^{2}$, $\frac{1}{4097152081} a^{15} + \frac{5}{178137047} a^{13} + \frac{24251}{4097152081} a^{11} + \frac{7372491}{4097152081} a^{9} - \frac{3278504}{16194277} a^{7} - \frac{13150}{64009} a^{5} - \frac{113}{253} a^{3}$, $\frac{1}{137778905817168744772458436084287121} a^{16} - \frac{243323262951387621270934}{5990387209442119337932975481925527} a^{14} - \frac{3294749068712987899865774531}{137778905817168744772458436084287121} a^{12} - \frac{5893802546959349386667671440}{137778905817168744772458436084287121} a^{10} - \frac{901884679889145924954748920061}{544580655403829030721179589265957} a^{8} + \frac{484459264517100784882961317469}{2152492709106043599688456874569} a^{6} - \frac{2634511156355108577336215520}{8507876320577247429598643773} a^{4} - \frac{3113806364568274834376550}{33627969646550385097227841} a^{2} + \frac{64659282707264427291557}{132916876073321680226197}$, $\frac{1}{137778905817168744772458436084287121} a^{17} - \frac{243323262951387621270934}{5990387209442119337932975481925527} a^{15} - \frac{3294749068712987899865774531}{137778905817168744772458436084287121} a^{13} - \frac{5893802546959349386667671440}{137778905817168744772458436084287121} a^{11} - \frac{901884679889145924954748920061}{544580655403829030721179589265957} a^{9} + \frac{484459264517100784882961317469}{2152492709106043599688456874569} a^{7} - \frac{2634511156355108577336215520}{8507876320577247429598643773} a^{5} - \frac{3113806364568274834376550}{33627969646550385097227841} a^{3} + \frac{64659282707264427291557}{132916876073321680226197} a$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 171435305330000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1152 |
| The 24 conjugacy class representatives for t18n269 |
| Character table for t18n269 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.1620.1, 9.9.344373768000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.16.12 | $x^{9} + 6 x^{8} + 3$ | $9$ | $1$ | $16$ | $S_3\times C_3$ | $[2, 2]^{2}$ |
| 3.9.16.12 | $x^{9} + 6 x^{8} + 3$ | $9$ | $1$ | $16$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $23$ | 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 23.12.6.2 | $x^{12} - 6436343 x^{2} + 2220538335$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ | |