Normalized defining polynomial
\( x^{18} - 4 x^{16} - 2 x^{15} - 102 x^{14} - 80 x^{13} - 360 x^{12} - 100 x^{11} + 1860 x^{10} - 1536 x^{9} + 13448 x^{8} - 4200 x^{7} - 11752 x^{6} - 23504 x^{5} + 48448 x^{4} - 24848 x^{3} + 3296 x^{2} + 576 x - 128 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8050036835600078017544694267904=2^{28}\cdot 37^{6}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{8} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{40} a^{14} + \frac{1}{40} a^{13} + \frac{1}{20} a^{12} - \frac{1}{20} a^{11} + \frac{1}{20} a^{9} - \frac{1}{20} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{1360} a^{15} - \frac{3}{340} a^{14} + \frac{37}{680} a^{13} + \frac{11}{680} a^{12} + \frac{19}{340} a^{11} + \frac{7}{85} a^{10} - \frac{1}{20} a^{9} + \frac{33}{340} a^{8} - \frac{39}{340} a^{7} + \frac{7}{170} a^{6} - \frac{3}{34} a^{5} + \frac{3}{34} a^{4} - \frac{4}{17} a^{3} + \frac{28}{85} a^{2} + \frac{33}{85} a - \frac{9}{85}$, $\frac{1}{13600} a^{16} - \frac{1}{6800} a^{15} - \frac{37}{3400} a^{14} + \frac{49}{1360} a^{13} - \frac{39}{6800} a^{12} + \frac{7}{1700} a^{11} - \frac{83}{850} a^{10} + \frac{67}{3400} a^{9} - \frac{83}{3400} a^{8} + \frac{33}{1700} a^{7} + \frac{157}{1700} a^{6} - \frac{373}{1700} a^{5} - \frac{9}{1700} a^{4} + \frac{117}{850} a^{3} + \frac{16}{85} a^{2} - \frac{189}{850} a - \frac{198}{425}$, $\frac{1}{2798139345544922112276800} a^{17} + \frac{1284346345798695681}{82298216045438885655200} a^{16} + \frac{1050002615610533997}{139906967277246105613840} a^{15} + \frac{9844530863809152340851}{1399069672772461056138400} a^{14} + \frac{44695247354436150734431}{1399069672772461056138400} a^{13} + \frac{19805246147330645535297}{699534836386230528069200} a^{12} - \frac{1140293911975799848087}{174883709096557632017300} a^{11} + \frac{433501685563509751139}{27981393455449221122768} a^{10} + \frac{1186038271107577384807}{41149108022719442827600} a^{9} + \frac{14551785094798881545509}{349767418193115264034600} a^{8} - \frac{11573990991131823976099}{69953483638623052806920} a^{7} + \frac{1186066266726727089357}{20574554011359721413800} a^{6} - \frac{38899409597773190203047}{349767418193115264034600} a^{5} - \frac{79666507309840841189}{514363850283993035345} a^{4} + \frac{3619616831851022747778}{43720927274139408004325} a^{3} + \frac{82415200407769619153471}{174883709096557632017300} a^{2} + \frac{4345536732696439095536}{8744185454827881600865} a + \frac{5133641936838165119481}{43720927274139408004325}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2363947583.26 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 30 conjugacy class representatives for t18n520 |
| Character table for t18n520 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.1418629341618176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.24.336 | $x^{12} + 4 x^{11} - 2 x^{10} + 4 x^{6} + 4 x^{5} + 4 x^{4} - 2 x^{2} + 4 x - 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
| 37 | Data not computed | ||||||
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.6.4.1 | $x^{6} + 344 x^{3} + 49923$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 43.6.4.1 | $x^{6} + 344 x^{3} + 49923$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |