Normalized defining polynomial
\( x^{18} - 24 x^{16} - 4 x^{15} + 261 x^{14} + 108 x^{13} - 1604 x^{12} - 1152 x^{11} + 6225 x^{10} + 7744 x^{9} - 12690 x^{8} - 29208 x^{7} - 6671 x^{6} + 27936 x^{5} + 31944 x^{4} + 13632 x^{3} + 1440 x^{2} - 576 x - 128 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(778072968681250317161459613696=2^{30}\cdot 3^{24}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{138} a^{13} + \frac{2}{23} a^{12} - \frac{1}{69} a^{11} + \frac{1}{23} a^{10} - \frac{7}{138} a^{9} + \frac{14}{69} a^{8} - \frac{5}{69} a^{7} - \frac{11}{69} a^{6} - \frac{1}{2} a^{5} + \frac{13}{69} a^{4} - \frac{3}{23} a^{3} + \frac{28}{69} a^{2} - \frac{5}{138} a + \frac{20}{69}$, $\frac{1}{6348} a^{14} - \frac{3}{1058} a^{13} + \frac{81}{529} a^{12} - \frac{6}{529} a^{11} + \frac{733}{6348} a^{10} - \frac{295}{3174} a^{9} - \frac{385}{1587} a^{8} + \frac{196}{1587} a^{7} - \frac{2675}{6348} a^{6} + \frac{841}{3174} a^{5} - \frac{179}{1058} a^{4} + \frac{42}{529} a^{3} + \frac{1765}{6348} a^{2} + \frac{877}{3174} a - \frac{139}{1587}$, $\frac{1}{1460040} a^{15} + \frac{3}{48668} a^{14} - \frac{1301}{365010} a^{13} - \frac{4483}{121670} a^{12} - \frac{125539}{1460040} a^{11} - \frac{74977}{730020} a^{10} + \frac{24376}{182505} a^{9} + \frac{32737}{182505} a^{8} - \frac{218829}{486680} a^{7} - \frac{280091}{730020} a^{6} - \frac{25977}{243340} a^{5} + \frac{161039}{365010} a^{4} + \frac{37153}{1460040} a^{3} - \frac{16523}{146004} a^{2} - \frac{2643}{5290} a - \frac{21546}{60835}$, $\frac{1}{67161840} a^{16} + \frac{7}{33580920} a^{15} - \frac{61}{2798410} a^{14} + \frac{37817}{16790460} a^{13} - \frac{353683}{67161840} a^{12} + \frac{1057597}{6716184} a^{11} - \frac{1855187}{16790460} a^{10} - \frac{205027}{4197615} a^{9} - \frac{15926543}{67161840} a^{8} - \frac{1148101}{6716184} a^{7} + \frac{32537}{2238728} a^{6} + \frac{1915419}{5596820} a^{5} + \frac{20020577}{67161840} a^{4} - \frac{1799483}{11193640} a^{3} + \frac{1561819}{8395230} a^{2} + \frac{831041}{2798410} a - \frac{1926521}{4197615}$, $\frac{1}{3089444640} a^{17} - \frac{1}{193090290} a^{16} + \frac{29}{386180580} a^{15} - \frac{8421}{257453720} a^{14} - \frac{2381049}{1029814880} a^{13} - \frac{34082323}{257453720} a^{12} + \frac{37677349}{257453720} a^{11} - \frac{6819269}{128726860} a^{10} - \frac{58464979}{617888928} a^{9} - \frac{19093733}{64363430} a^{8} - \frac{3839029}{22387280} a^{7} + \frac{18082741}{193090290} a^{6} + \frac{93114509}{617888928} a^{5} + \frac{48217549}{96545145} a^{4} + \frac{3683581}{77236116} a^{3} - \frac{103091027}{386180580} a^{2} + \frac{27728971}{193090290} a + \frac{1761173}{96545145}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 439659323.38 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3:S_4$ (as 18T154):
| A solvable group of order 432 |
| The 20 conjugacy class representatives for $C_3:S_3:S_4$ |
| Character table for $C_3:S_3:S_4$ |
Intermediate fields
| 3.3.148.1, 6.2.87616.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.12.24.342 | $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{5} - 2 x^{4} + 4 x^{3} - 2 x^{2} + 4 x - 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
| $3$ | 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ |
| 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |