Normalized defining polynomial
\( x^{18} - x^{17} - 15 x^{16} + 26 x^{15} + 102 x^{14} - 154 x^{13} - 658 x^{12} + 1123 x^{11} + 1768 x^{10} - 3055 x^{9} - 5130 x^{8} + 7964 x^{7} + 3857 x^{6} - 7735 x^{5} - 6123 x^{4} + 4758 x^{3} + 2938 x^{2} - 312 x - 13 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(774263645280065083180300081=7^{16}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{338112663860252011698043670838854693} a^{17} - \frac{81602948450234555013435282786844090}{338112663860252011698043670838854693} a^{16} - \frac{8633699923875771562629535242509573}{338112663860252011698043670838854693} a^{15} - \frac{7105348143089757181567574175679419}{338112663860252011698043670838854693} a^{14} + \frac{104200997592330146950101145493274409}{338112663860252011698043670838854693} a^{13} + \frac{115289164677322148522133303243921459}{338112663860252011698043670838854693} a^{12} + \frac{29056489088464706638566199433637079}{338112663860252011698043670838854693} a^{11} + \frac{32079082420950316765712144530900619}{338112663860252011698043670838854693} a^{10} + \frac{75719826297493149663773308945227992}{338112663860252011698043670838854693} a^{9} + \frac{155417216098245610838931302369269985}{338112663860252011698043670838854693} a^{8} + \frac{7685357536506722032780684400869469}{338112663860252011698043670838854693} a^{7} + \frac{120568041335898864016389509812593463}{338112663860252011698043670838854693} a^{6} + \frac{9092187385576444361025978891964042}{338112663860252011698043670838854693} a^{5} - \frac{147816887632187758068740591677652206}{338112663860252011698043670838854693} a^{4} - \frac{77782369846138712098233305653817631}{338112663860252011698043670838854693} a^{3} + \frac{36002298430468795252768088982074091}{338112663860252011698043670838854693} a^{2} + \frac{66649094078438490475301298378173876}{338112663860252011698043670838854693} a - \frac{148130390192888980755048288111906789}{338112663860252011698043670838854693}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2770505.95053 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2.A_4$ (as 18T47):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_3^2.A_4$ |
| Character table for $C_3^2.A_4$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.2.405769.1, 9.9.164648481361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.8.2 | $x^{9} - 7$ | $9$ | $1$ | $8$ | $C_9:C_3$ | $[\ ]_{9}^{3}$ |
| 7.9.8.2 | $x^{9} - 7$ | $9$ | $1$ | $8$ | $C_9:C_3$ | $[\ ]_{9}^{3}$ | |
| $13$ | 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.4.2 | $x^{6} - 13 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |